Given equation is y2logy=xpylogx+x2p2
Putting, logy=v,logx=u
then,
y1dy=dv,x1dx=du ⟹dxdy=xydudv
Putting the values, then equation will be,
y2(dudv)2+xyuxydudv−y2v=0
(dudv)2+ududv−v=0
Let, P=dudv then P2+uP−v=0
Differentiating equation, we get,
2PdudP+P+ududP−P=0⟹dudP(2P+u)=0
Then, dudP=0⟹P=k
dudv=k⟹v=ku (1)
Also, 2P+u=0⟹2dv=−udu
2v=−21u2+C (2)
From (1), ey=kex⟹y=Kx (3)
From (2), 2ey=−21e2x+C (4)
Equation(3) and (4) are the required solutions.
Comments