Question #139807
Solve
(D^2+DD'-6D'^2)z= ycosx
1
Expert's answer
2020-10-25T19:14:45-0400

Given,


(D2+DD6D2)z=ycosx(D^2+DD'-6D'^2)z= y\cos x

Now, Auxiliary equation will be


m2+m6=0    (m2)(m+3)=0    m=2,3m^2+m-6=0\\ \implies (m-2)(m+3)=0\\ \implies m=2,-3

Hence,

C.F=ϕ1(y+2x)+ϕ2(y3x)C.F=\phi_1(y+2x)+\phi_2(y-3x)

Now,


P.I=1(D2+DD6D2)ycosx    P.I=1(D+3D)(D2D)ycosx=1D+3DD2Dycosxdx=1D+3D[(c12x)sinx2cosx]=1D+3D(ysinx2cosx)=D+3DysinxdxD+3D2cosxdx=D+3D(c2+3x)sinxdxD+3D2cosxdx(y=c2+3x)P.I=\frac{1}{(D^2+DD'-6D'^2)}y\cos x\\ \implies P.I=\frac{1}{(D+3D')(D-2D')}y\cos x\\ =\frac{1}{D+3D'}\int_{D-2D'}y\cos x \, dx\\ =\frac{1}{D+3D'}[(c_1-2x)\sin x-2\cos x]\\ =\frac{1}{D+3D'}(y\sin x-2\cos x)\\ =\int_{D+3D'}y\sin xdx-\int_{D+3D'}2\cos x dx\\ =\int_{D+3D'}(c_2+3x)\sin xdx-\int_{D+3D'}2\cos x dx\hspace{1cm}(y=c_2+3x)\\


    P.I=ycosx+cosxdx=ycosx+sinx\implies P.I=-y\cos x+\int\cos x \, dx =-y\cos x+\sin x

Therefore the complete solution is

C.F+P.I=ϕ1(y+2x)+ϕ2(y3x)+ycosx+sinxC.F+P.I=\phi_1(y+2x)+\phi_2(y-3x)+-y\cos x+\sin x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS