Question #139606
(px-y)( x-py)=2p
Using x^2=u,y^2=u
Find general solution and solveble solutin
1
Expert's answer
2020-10-21T17:23:31-0400
(pxy)(xpy)=2p(px-y)(x-py)=2p

(pxyy2)(xpy)=2py(pxy-y^2)(x-py)=2py

(pyxx2y2)(1pyx)=2pyx({py \over x}\cdot x^2-y^2)(1-{py \over x})=2{py \over x}

pyxx2y2=2pyx1pyx{py \over x}\cdot x^2-y^2=\dfrac{2\dfrac{py}{x}}{1-\dfrac{py}{x}}

y2=pyxx22pyx1pyxy^2={py \over x}\cdot x^2-\dfrac{2\dfrac{py}{x}}{1-\dfrac{py}{x}}

Let x2=u,y2=v.x^2=u, y^2=v. Then


du=2xdx,dv=2ydydu=2xdx, dv=2ydy

p=dydx=2x2ydvdu=uvP,P=dvdup=\dfrac{dy}{dx}=\dfrac{2x}{2y}\cdot \dfrac{dv}{du}=\dfrac{\sqrt{u}}{\sqrt{v}}\cdot P, P=\dfrac{dv}{du}

pyx=dvdu=P{py \over x}=\dfrac{dv}{du}=P

Substitute


v=Pu2P1Pv=Pu-\dfrac{2P}{1-P}

We have Clairaut Equation


v=Pu+f(P)v=Pu+f(P)

The general solution is given by v=Cu+f(C),Cv=Cu+f(C), C is an arbitrary constant.

Therefore


v=Cu2C1C,C is arbitrary constant,C1v=Cu-\dfrac{2C}{1-C}, C \ \text{is arbitrary constant}, C\not=1

The general solution is


y2=Cx22C1C, C is arbitrary constant,C1y^2=Cx^2-\dfrac{2C}{1-C}, \ C \ \text{is arbitrary constant}, C\not=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS