( p x − y ) ( x − p y ) = 2 p (px-y)(x-py)=2p ( p x − y ) ( x − p y ) = 2 p
( p x y − y 2 ) ( x − p y ) = 2 p y (pxy-y^2)(x-py)=2py ( p x y − y 2 ) ( x − p y ) = 2 p y
( p y x ⋅ x 2 − y 2 ) ( 1 − p y x ) = 2 p y x ({py \over x}\cdot x^2-y^2)(1-{py \over x})=2{py \over x} ( x p y ⋅ x 2 − y 2 ) ( 1 − x p y ) = 2 x p y
p y x ⋅ x 2 − y 2 = 2 p y x 1 − p y x {py \over x}\cdot x^2-y^2=\dfrac{2\dfrac{py}{x}}{1-\dfrac{py}{x}} x p y ⋅ x 2 − y 2 = 1 − x p y 2 x p y
y 2 = p y x ⋅ x 2 − 2 p y x 1 − p y x y^2={py \over x}\cdot x^2-\dfrac{2\dfrac{py}{x}}{1-\dfrac{py}{x}} y 2 = x p y ⋅ x 2 − 1 − x p y 2 x p y Let x 2 = u , y 2 = v . x^2=u, y^2=v. x 2 = u , y 2 = v . Then
d u = 2 x d x , d v = 2 y d y du=2xdx, dv=2ydy d u = 2 x d x , d v = 2 y d y
p = d y d x = 2 x 2 y ⋅ d v d u = u v ⋅ P , P = d v d u p=\dfrac{dy}{dx}=\dfrac{2x}{2y}\cdot \dfrac{dv}{du}=\dfrac{\sqrt{u}}{\sqrt{v}}\cdot P, P=\dfrac{dv}{du} p = d x d y = 2 y 2 x ⋅ d u d v = v u ⋅ P , P = d u d v
p y x = d v d u = P {py \over x}=\dfrac{dv}{du}=P x p y = d u d v = P Substitute
v = P u − 2 P 1 − P v=Pu-\dfrac{2P}{1-P} v = P u − 1 − P 2 P We have Clairaut Equation
v = P u + f ( P ) v=Pu+f(P) v = P u + f ( P ) The general solution is given by v = C u + f ( C ) , C v=Cu+f(C), C v = C u + f ( C ) , C is an arbitrary constant.
Therefore
v = C u − 2 C 1 − C , C is arbitrary constant , C ≠ 1 v=Cu-\dfrac{2C}{1-C}, C \ \text{is arbitrary constant}, C\not=1 v = C u − 1 − C 2 C , C is arbitrary constant , C = 1 The general solution is
y 2 = C x 2 − 2 C 1 − C , C is arbitrary constant , C ≠ 1 y^2=Cx^2-\dfrac{2C}{1-C}, \ C \ \text{is arbitrary constant}, C\not=1 y 2 = C x 2 − 1 − C 2 C , C is arbitrary constant , C = 1
Comments