Given
x 2 p 2 + x y p + 2 y 2 = 0 x^2p^2+xyp+2y^2=0 x 2 p 2 + x y p + 2 y 2 = 0 Let us denote x p = q xp=q x p = q ,thus we get q 2 + y q + 2 y 2 = 0 q^2+yq+2y^2=0 q 2 + y q + 2 y 2 = 0 , now solving q ,we get,
q = − y ± y 2 − 4 ⋅ 1 ⋅ 2 y 2 2 ⟹ q = − y ± y 7 i 2 ⟹ x p = x d y d x = y ( − 1 ± 7 i ) ⟹ d y y = ( − 1 ± 7 i ) d x x ⟹ ∫ d y y = ( − 1 ± 7 i ) ∫ d x x ⟹ ln y = − 1 ± 7 i ln x + ln c ⟹ y = c x − 1 ± 7 i q=\frac{-y\pm\sqrt{y^2-4\cdot 1\cdot 2y^2}}{2}\\
\implies q=\frac{-y\pm y\sqrt{7}i}{2}\\
\implies xp=x\frac{dy}{dx}=y(-1\pm\sqrt{7}i)\\
\implies \frac{dy}{y}=(-1\pm\sqrt{7}i)\frac{dx}{x}\\
\implies \int\frac{dy}{y}=(-1\pm\sqrt{7}i)\int\frac{dx}{x}\\
\implies \ln y=-1\pm\sqrt{7}i\ln x+\ln c\\
\implies y=cx^{-1\pm\sqrt{7}i} q = 2 − y ± y 2 − 4 ⋅ 1 ⋅ 2 y 2 ⟹ q = 2 − y ± y 7 i ⟹ x p = x d x d y = y ( − 1 ± 7 i ) ⟹ y d y = ( − 1 ± 7 i ) x d x ⟹ ∫ y d y = ( − 1 ± 7 i ) ∫ x d x ⟹ ln y = − 1 ± 7 i ln x + ln c ⟹ y = c x − 1 ± 7 i Where c is constant and i = − 1 i=\sqrt{-1} i = − 1
Comments