Question #139607
X^2p^2+xyp+2y^2=0
1
Expert's answer
2020-10-25T12:12:56-0400

Given

x2p2+xyp+2y2=0x^2p^2+xyp+2y^2=0

Let us denote xp=qxp=q ,thus we get q2+yq+2y2=0q^2+yq+2y^2=0 , now solving q ,we get,


q=y±y2412y22    q=y±y7i2    xp=xdydx=y(1±7i)    dyy=(1±7i)dxx    dyy=(1±7i)dxx    lny=1±7ilnx+lnc    y=cx1±7iq=\frac{-y\pm\sqrt{y^2-4\cdot 1\cdot 2y^2}}{2}\\ \implies q=\frac{-y\pm y\sqrt{7}i}{2}\\ \implies xp=x\frac{dy}{dx}=y(-1\pm\sqrt{7}i)\\ \implies \frac{dy}{y}=(-1\pm\sqrt{7}i)\frac{dx}{x}\\ \implies \int\frac{dy}{y}=(-1\pm\sqrt{7}i)\int\frac{dx}{x}\\ \implies \ln y=-1\pm\sqrt{7}i\ln x+\ln c\\ \implies y=cx^{-1\pm\sqrt{7}i}

Where c is constant and i=1i=\sqrt{-1}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS