(D2−3D+2)y=1+e−x1The auxiliary equation ism2−3m+2=0(m−1)(m−2)=0m=1,2y=yp+ycycis the complementary factorypis the particular Integralyc=Aex+Be2xyp=V1(x)e2x+V2(x)exW(x)is the Wronskian of the solutionW(x)=e∫3dx=e3xV1(x)=−∫e3x(1+e−x)exdx=−∫1+e−xe−2xdx=−∫1+e−xe−x⋅e−xdx=∫1+e−xe−xd(e−x)=∫(1−1+e−x1)d(e−x)=e−x−ln(1+e−x)+CV2(x)=∫e3x(1+e−x)e2xdx=∫1+e−xe−xdx=−∫1+e−x1d(e−x)=−ln(1+e−x)+CThe constants can be ignored, since we aretrying to discover non-constant solution to the DEy=Aex+Be2x−exln(1+e−x)+e2x(e−x−ln(1+e−x))y=Aex+Be2x−exln(1+e−x)+ex−e2xln(1+e−x)∴y=Aex+Be2x−(ex+e2x)ln(1+e−x)+ex
Comments