Given differential equation is, p 2 ( x 2 − a 2 ) − 2 x y p + y 2 + a 4 = 0 p^2(x^2-a^2)-2xyp+y^2+a^4=0 p 2 ( x 2 − a 2 ) − 2 x y p + y 2 + a 4 = 0
I can write it as,
p 2 x 2 − 2 x y p + y 2 = a 2 p 2 − a 4 p^2x^2-2xyp+y^2=a^2p^2 - a^4 p 2 x 2 − 2 x y p + y 2 = a 2 p 2 − a 4
⟹ ( y − x p ) 2 = a 2 ( p 2 − a 2 ) \implies (y-xp)^2 = a^2(p^2-a^2) ⟹ ( y − x p ) 2 = a 2 ( p 2 − a 2 )
Then, ( y − x p ) = a 2 ( p 2 − a 2 ) (y-xp) = \sqrt{a^2(p^2-a^2)} ( y − x p ) = a 2 ( p 2 − a 2 )
y = x p ± a 2 ( p 2 − a 2 ) y=xp \pm \sqrt{a^2(p^2-a^2)} y = x p ± a 2 ( p 2 − a 2 )
This equation is same as charpit's equation, y = x f ( p ) + ϕ ( p ) y = xf(p)+\phi(p) y = x f ( p ) + ϕ ( p )
So general solution of the equation will be,
y = c x ± a 2 ( c 2 − a 2 ) y=cx \pm \sqrt{a^2(c^2-a^2)} y = c x ± a 2 ( c 2 − a 2 )
where c is any constant.
For particular solution, we need some boundary conditions.
Let x = 0 at y=0
then,
0 = 0 c ± a 2 ( c 2 − a 2 ) ⟹ c = ± a 0=0c \pm \sqrt{a^2(c^2-a^2)} \implies c = \pm a 0 = 0 c ± a 2 ( c 2 − a 2 ) ⟹ c = ± a
so, particular solution will be,
y = ± a x y=\pm ax y = ± a x
Comments