x2y"−2xy′+2y=x2+sin(ln(5x))x=ete2ty"−2ety′+2y=e2t+sin(5t)y=f(ln(x))dtdy=xf′(ln(x))dt2d2y=x2−f′(ln(x))+x2f′′(ln(x))=x2f"(ln(x))−f′(ln(x))e2t(x2f"(ln(x))−f′(ln(x)))−2etxf′(ln(x))+2f(ln(x))=e2t+sin(5t)e2t(e2tf"(ln(x))−f′(ln(x)))−2etetf′(ln(x))+2f(ln(x))=e2t+sin(5t)f"(ln(x))−f′(ln(x))−2f′(ln(x))+2f(ln(x))=e2t+sin(5t)f"(ln(x))−3f′(ln(x))+2f(ln(x))=e2t+sin(5t)f"(t)−3f′(t)+2f(t)=e2t+sin(5t)f(t)=fp+fcfcis the complementary factor whilefpis the particular integralThe auxiliary equation ism2−3m+2=0(m−1)(m−2)=0m=1,2f"(t)−3f′(t)+2f(t)=e2t+sin(5t)Solving by the method of variation of parametersW(t)is the Wronskian of the solution to the DEW(t)=e−∫−3dt=e3tV1(t)=−∫ete3t(e2t+sin(5t))dt=−∫(1+e−2tsin(5t)))dt∫e−2tsin(5t)dt=−292e−2tsin(5t)−295e−2tcos(5t)V1(t)=−t+292e−2tsin(5t)+295e−2tcos(5t)V2(t)=∫e2te3t(e2t+sin(5t))dt=∫et+e−tsin(5t)dt=et−265e−tcos(5t)−261e−tsin(5t)fp=(−t+292e−2tsin(5t)+295e−2tcos(5t))e2t+(et−265e−tcos(5t)−261e−tsin(5t))et=−te2t+292sin(5t)+295cos(5t)+e2t−265cos(5t)−261sin(5t)=e2t(1−t)−78415cos(5t)+75423sin(5t)f"(t)−3f′(t)+2f(t)=e2t+sin(5t)∴f(t)=Aet+Be2t+e2t(1−t)−78415cos(5t)+75423sin(5t)∴y=f(x)=Ax+Bx2+x2(1−ln(x))−78415cos(5ln(x))+75423sin(5ln(x))Is the solution to the ODE
Comments
Leave a comment