xy'=x2+3y
xy'-3y=x2
divide through by x
(dy/dx)-(3/x)y=x
when we compare with the standard form
(dy/dx)+P(x)y=Q(x)
now we have
P(x)=(-3/x)*Q(x)=x
since "\\int" p(x)dx=-3"\\int" (1/x)dx
=-3lnx
=lnx-3
integrating factor
I=e"\\int" q(x)dx
=elnx-q
=x-3
x-3(dy/dx)-3x-4y=x-1
d/dx(x-3y)=x-1
=x-3y="\\int" (1/x)dx
=x-3y=ln |x|+C
y=x3ln|x|+Cx3
Comments
Leave a comment