Question #139453
Solve
6y^2dx-x(2x^3+y)dy=0
1
Expert's answer
2020-10-25T18:40:34-0400

Given DE is

6y2dxx(2x3+y)dy=06y^2dx-x(2x^3+y)dy=0

After rearranging the above equation ,we can write


dxdyx6y=x43y2    3dxdyx4+12yx3=1y2\frac{dx}{dy}-\frac{x}{6y}=\frac{x^4}{3y^2}\\ \implies -\frac{3\frac{dx}{dy}}{x^4}+\frac{1}{2yx^3}=-\frac{1}{y^2}

Put

v=1x3    dvdy=3dxdyx4v=\frac{1}{x^3}\implies \frac{dv}{dy}= -\frac{3\frac{dx}{dy}}{x^4}

Thus, we get


dvdy+12yv=1y2\frac{dv}{dy}+\frac{1}{2y}v=-\frac{1}{y^2}

Hence, Integrating Factor is

I.F=e1/2ydy=yI.F=e^{\int 1/2ydy}=\sqrt{y}

So it follows


ddy(yv)=y3/2    yv=y3/2dy=2y1/2+C1    v=C1y1/2+2y1    1x3=C1y1/2+2y1\frac{d}{dy}(\sqrt{y}v)=-y^{-3/2}\\ \implies \sqrt{y}v=-\int y^{-3/2}dy=2y^{-1/2}+C_1\\ \implies v=C_1y^{-1/2}+2y^{-1}\\ \implies \frac{1}{x^3}=C_1y^{-1/2}+2y^{-1}\\

After simplification we get,


y(x)=3C1x9(9C12x3+8)2+x3(9C12x3+4)2y(x)=3C1x9(9C12x3+8)2+x3(9C12x3+4)2y{\left(x \right)} = \frac{3 C_{1} \sqrt{x^{9} \left(9 C_{1}^{2} x^{3} + 8\right)}}{2} + \frac{x^{3} \left(9 C_{1}^{2} x^{3} + 4\right)}{2}\\ y{\left(x \right)} = - \frac{3 C_{1} \sqrt{x^{9} \left(9 C_{1}^{2} x^{3} + 8\right)}}{2} + \frac{x^{3} \left(9 C_{1}^{2} x^{3} + 4\right)}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS