Given DE is
6y2dx−x(2x3+y)dy=0 After rearranging the above equation ,we can write
dydx−6yx=3y2x4⟹−x43dydx+2yx31=−y21 Put
v=x31⟹dydv=−x43dydx Thus, we get
dydv+2y1v=−y21
Hence, Integrating Factor is
I.F=e∫1/2ydy=y So it follows
dyd(yv)=−y−3/2⟹yv=−∫y−3/2dy=2y−1/2+C1⟹v=C1y−1/2+2y−1⟹x31=C1y−1/2+2y−1 After simplification we get,
y(x)=23C1x9(9C12x3+8)+2x3(9C12x3+4)y(x)=−23C1x9(9C12x3+8)+2x3(9C12x3+4)
Comments