SolutionGiven that:-
y′′+4y′+4y=e−2x
In operator form
(D′′+4D+4)y=e−2x
Where f(D)=(D2+4D+4)
R=e−2x
The A.E is
f(m)=0⟹m2+4m+4=0⟹(m+2)2=0⟹m=−2,−2∴yc=C1e−2x+C2xe−2xyp=AU+BVU=e−2x ; U′=−2e−2x ; V=xe−2x ; V′=−2xe−2x+e−2x UV′+VU′=−2xe−4x+e−4x+2xe−4x=e−4x∴A=∫UV′−VU′−VRdx=−∫e−4xxe−4xdx=−∫xdx=−∫xdx+∫[∫xdx]dx=−2x2+∫2x2dx=−2x2+21∫x2dx⟹−2x2+21⋅3x3=−2x2+6x3∴B=∫UV′−VU′−URdx=∫e−4xe−2x⋅e−2xdx=∫dx=∫dx−∫[∫dx]dx=x−∫xdx=x−2x2⟹y=yc+yp=C1e−2x+C2xe−2x+(x−2x2)e−2x+(6x3+2x2)e−2x
Comments