Question #139371

) Solve the ODE y+4y+4y= e−2x using the method of variation of parameters x3


1
Expert's answer
2020-10-20T18:37:29-0400
SolutionSolution

Given that:-

y+4y+4y=e2xy''+4y'+4y=e^{-2x}

In operator form

(D+4D+4)y=e2x(D''+4D+4)y=e^{-2x}

Where f(D)=(D2+4D+4)f(D)=(D^{2}+4D+4)

R=e2xR=e^{-2x}

The A.E is

f(m)=0    m2+4m+4=0    (m+2)2=0    m=2,2yc=C1e2x+C2xe2xyp=AU+BVU=e2x ; U=2e2x ; V=xe2x ; V=2xe2x+e2x UV+VU=2xe4x+e4x+2xe4x=e4xA=VRUVVUdx=xe4xe4xdx=xdx=xdx+[xdx]dx=x22+x22dx=x22+12x2dx    x22+12x33=x22+x36B=URUVVUdx=e2xe2xe4xdx=dx=dx[dx]dx=xxdx=xx22    y=yc+yp=C1e2x+C2xe2x+(xx22)e2x+(x36+x22)e2xf(m)=0 \implies m^2+4m+4=0 \implies (m+2)^2=0\\ \implies m = -2, -2\\ \therefore y_c=C_1e^{-2x}+C_2xe^{-2x}\\ y_p=AU+BV\\ U=e^{-2x}\ ;\ U'=-2e^{-2x}\ ;\ \\ V=xe^{-2x}\ ;\ V'=-2xe^{-2x}+e^{-2x}\ \\ UV'+VU'=-2xe^{-4x}+e^{-4x}+2xe^{-4x}=e^{-4x}\\ \\ \therefore A=\intop \frac{-VR}{UV'-VU'}dx= - \intop \frac{xe^{-4x}}{e^{-4x}}dx = -\intop xdx\\ = -\intop xdx + \intop [\intop xdx]dx\\ = -\frac{x^2}{2}+\intop \frac{x^2}{2}dx = -\frac{x^2}{2} + \frac12 \intop x^2dx\\ \implies -\frac{x^2}{2} + \frac12 \cdot \frac{x^3}{3} = -\frac{x^2}{2} + \frac {x^3}{6}\\ \therefore B=\intop \frac{-UR}{UV'-VU'}dx= \intop \frac{e^{-2x} \cdot e^{-2x}}{e^{-4x}}dx= \intop dx\\ = \intop dx-\intop [\intop dx]dx\\ =x-\intop xdx = x-\frac{x^2}{2}\\ \implies y=y_c+y_{p}=C_1e^{-2x}+C_2xe^{-2x}+(x-\frac{x^2}{2})e^{-2x}+ (\frac{x^3}{6} +\frac{x^2}{2})e^{-2x}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS