dy/dx=2x+2xy²/y+2x²y
"\\frac{dy}{dx}=\\frac{2x+2xy^2}{y+2x^2y}"
Let us solve this differential equation:
"\\frac{dy}{dx}=\\frac{2x(1+y^2)}{y(1+2x^2)}"
"\\frac{ydy}{1+y^2}=\\frac{2xdx}{1+2x^2}" ("1+y^2>0")
"\\int\\frac{ydy}{1+y^2}=\\int\\frac{2xdx}{1+2x^2}"
"\\frac{1}{2}\\int\\frac{d(1+y^2)}{1+y^2}=\\frac{1}{2}\\int\\frac{d(1+2x^2)}{1+2x^2}"
"\\int\\frac{d(1+y^2)}{1+y^2}=\\int\\frac{d(1+2x^2)}{1+2x^2}"
"\\ln(1+y^2)=\\ln(1+2x^2)+ln(C)"
"\\ln(1+y^2)=\\ln((1+2x^2)C)"
Therefore, the general solution is the following:
"1+y^2=C(1+2x^2)"
Comments
Leave a comment