Question #138622
Define the type of given partial differential equation and find the solution.
(y^2+z^2-x^2 )p+2xyq+2zx=0
1
Expert's answer
2020-10-17T13:07:06-0400

Lagrange linear equation


(y2+z2x2)p+2xyq+2zx=0(y2+z2x2)p+2xyq=2zx(y^2+z^2-x^2 )p+2xyq+2zx=0\\ (y^2 + z^2 - x^2)p + 2xyq =- 2zx


from general form,

Pp+Qq=RPp +Qq =R


P=y2+z2x2Q=2xyR=2zxP = y^2 + z^2 -x^2\\ Q = 2xy\\ R =-2zx


From the auxiliary equation,

dxP=dyQ=dzR\dfrac{dx}{P}= \dfrac{dy}{Q}= \dfrac{dz}{R}


dxy2+z2x2=dy2xy=dz2zx(i)\dfrac{dx}{y^2 +z^2 -x^2}= \dfrac{dy}{2xy}= \dfrac{dz}{-2zx} \quad------(i)


Taking the last 2 ratios

dy2xy=dz2zx\dfrac{dy}{2xy}= \dfrac{dz}{-2zx}


dyy=dzz\dfrac{dy}{y}= -\dfrac{dz}{z}


Integrating;

logy=(logz)+logc1logy=logz+logc1logy+logz=logc1logyz=logc1\log y = -(\log z) + \log c_1\\ \log y = -\log z + \log c_1\\ \log y +\log z = \log c_1\\ \log yz =\log c_1

yz=c1yz = c_1

c1=yz(ii)c_1 = yz \quad------(ii)



Taking the first 2 ratios

dxy2+z2x2=dy2xy\dfrac{dx}{y^2 +z^2 -x^2}= \dfrac{dy}{2xy}

but,

c1=yzz=c1yc_1 = yz\\ \therefore z= \dfrac{c_1}{y}

substituting the value of z into the first 2 ratios,

we have,

dxy2+(c1y)2x2=dy2xy\dfrac{dx}{y^2 +(\frac{c_1}{y})^2 -x^2}= \dfrac{dy}{2xy}


2xydx=(y2+(c1y)2x2)dy2xy\, dx = (y^2 +(\dfrac{c_1}{y})^2 -x^2)dy


2xydx(y2+(c1y)2x2)dy=02xy\, dx - (y^2 +(\dfrac{c_1}{y})^2 -x^2)dy = 0


2xydx(y2+c12y2x2)dy=0(iii)2xy\, dx - (y^2 +\dfrac{c_1^2}{y^2}-x^2)dy = 0 \quad------(iii)


Integrating equation (iii)


2xydx(y2+c12y2x2)dy=0\large \int2xy\, dx - \int(y^2 +\dfrac{c_1^2}{y^2}-x^2)dy = 0


x2yy33+c12y=c2\large x^2y-\dfrac{y^3}{3}+\dfrac{c_1^2}{y} = c_2


but, c1=yzc_1 = yz

x2yy33+yz2=c2(iv)\therefore\large x^2y-\dfrac{y^3}{3}+yz^2 = c_2 \quad------(iv)


\therefore the general solution is;

f(yz,x2yy33+yz2)=0\large f(yz,\,\, x^2y- \dfrac{y^3}{3} +yz^2) = 0





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS