Lagrange linear equation
(y2+z2−x2)p+2xyq+2zx=0(y2+z2−x2)p+2xyq=−2zx
from general form,
Pp+Qq=R
P=y2+z2−x2Q=2xyR=−2zx
From the auxiliary equation,
Pdx=Qdy=Rdz
y2+z2−x2dx=2xydy=−2zxdz−−−−−−(i)
Taking the last 2 ratios
2xydy=−2zxdz
ydy=−zdz
Integrating;
logy=−(logz)+logc1logy=−logz+logc1logy+logz=logc1logyz=logc1
yz=c1
c1=yz−−−−−−(ii)
Taking the first 2 ratios
y2+z2−x2dx=2xydy
but,
c1=yz∴z=yc1
substituting the value of z into the first 2 ratios,
we have,
y2+(yc1)2−x2dx=2xydy
2xydx=(y2+(yc1)2−x2)dy
2xydx−(y2+(yc1)2−x2)dy=0
2xydx−(y2+y2c12−x2)dy=0−−−−−−(iii)
Integrating equation (iii)
∫2xydx−∫(y2+y2c12−x2)dy=0
x2y−3y3+yc12=c2
but, c1=yz
∴x2y−3y3+yz2=c2−−−−−−(iv)
∴ the general solution is;
f(yz,x2y−3y3+yz2)=0
Comments