Question #138536
Solve y zp + x²zq = y2x
1
Expert's answer
2020-10-17T14:18:28-0400

The given partial differential equation isyzp+x2zq=y2xdz=zxdx+zydydz=xy2,dx=yz,dy=x2zThe Lagrange’s auxiliary equationsfor the given PDE isdxyz=dyx2z=dzxy2Choosing(x2,y,0)as multipliers, we havex2dxydy=0Integrating both sides, we havex2dxydy=C1x33y22=cComparing the first and the last differential equationsdxyz=dzy2xyxdxzdz=0Butx3/3y2/2=cy=2x33+Cx2x33+Cdxz22=C2The Integral cannot be expressed in simplerterms and as such it can be expressedin terms of advanced functions like thehypergeometric function. We can hencewrite the Integral in terms of knowfunctions ifC=0.x2x33dxz22=C22723x72z22=C2So, a solution of the given PDE isϕ(x33y22,2723x72z22)=0\displaystyle\textsf{The given partial differential equation is}\\ yz\, p + x^2 z\, q = y^2 x \\ \mathrm{d}z =\frac{\partial z}{\partial x} \mathrm{d}x + \frac{\partial z}{\partial y} \mathrm{d}y \\ \mathrm{d}z = xy^2, \mathrm{d}x = yz, \mathrm{d}y = x^2 z \\ \textsf{The Lagrange’s auxiliary equations}\\\textsf{for the given PDE is}\\ \frac{\mathrm{d}x}{yz} = \frac{\mathrm{d}y}{x^2 z} = \frac{\mathrm{d}z}{xy^2}\\ \textsf{Choosing}\, (x^2, -y, 0)\, \textsf{as multipliers, we have}\\ x^2\mathrm{d}x - y\mathrm{d}y = 0 \\ \textsf{Integrating both sides, we have} \\ \int x^2\mathrm{d}x - \int y\mathrm{d}y = C_1 \\ \frac{x^3}{3} - \frac{y^2}{2} =c \\ \textsf{Comparing the first and the last differential equations}\\ \frac{\mathrm{d}x}{yz} = \frac{\mathrm{d}z}{y^2 x}\\ yx\mathrm{d}x - z\mathrm{d}z = 0\\ \textsf{But}\\ x^3/3 - y^2/2 = c \\ y = \sqrt{\frac{2x^3}{3} + C} \\ \therefore \int x\sqrt{\frac{2x^3}{3} + C}\, \mathrm{d}x - \frac{z^2}{2} = C_2\\ \textsf{The Integral cannot be expressed in simpler}\\ \textsf{terms and as such it can be expressed}\\\textsf{in terms of advanced functions like the}\\\textsf{hypergeometric function. We can hence}\\\textsf{write the Integral in terms of know}\\\textsf{functions if}\,C = 0.\\ \therefore \int x\sqrt{\frac{2x^3}{3}}\, \mathrm{d}x - \frac{z^2}{2} = C_2\\ \frac{2}{7}\sqrt{\frac{2}{3}} x^{\frac{7}{2}} - \frac{z^2}{2} = C_2\\ \textsf{So, a solution of the given PDE is}\, \\ \phi\left(\frac{x^3}{3} - \frac{y^2}{2}, \frac{2}{7}\sqrt{\frac{2}{3}} x^{\frac{7}{2}} - \frac{z^2}{2}\right) = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS