The given partial differential equation is y z p + x 2 z q = y 2 x d z = ∂ z ∂ x d x + ∂ z ∂ y d y d z = x y 2 , d x = y z , d y = x 2 z The Lagrange’s auxiliary equations for the given PDE is d x y z = d y x 2 z = d z x y 2 Choosing ( x 2 , − y , 0 ) as multipliers, we have x 2 d x − y d y = 0 Integrating both sides, we have ∫ x 2 d x − ∫ y d y = C 1 x 3 3 − y 2 2 = c Comparing the first and the last differential equations d x y z = d z y 2 x y x d x − z d z = 0 But x 3 / 3 − y 2 / 2 = c y = 2 x 3 3 + C ∴ ∫ x 2 x 3 3 + C d x − z 2 2 = C 2 The Integral cannot be expressed in simpler terms and as such it can be expressed in terms of advanced functions like the hypergeometric function. We can hence write the Integral in terms of know functions if C = 0. ∴ ∫ x 2 x 3 3 d x − z 2 2 = C 2 2 7 2 3 x 7 2 − z 2 2 = C 2 So, a solution of the given PDE is ϕ ( x 3 3 − y 2 2 , 2 7 2 3 x 7 2 − z 2 2 ) = 0 \displaystyle\textsf{The given partial differential equation is}\\
yz\, p + x^2 z\, q = y^2 x \\
\mathrm{d}z =\frac{\partial z}{\partial x} \mathrm{d}x + \frac{\partial z}{\partial y} \mathrm{d}y \\
\mathrm{d}z = xy^2, \mathrm{d}x = yz, \mathrm{d}y = x^2 z \\
\textsf{The Lagrange’s auxiliary equations}\\\textsf{for the given PDE is}\\
\frac{\mathrm{d}x}{yz} = \frac{\mathrm{d}y}{x^2 z} = \frac{\mathrm{d}z}{xy^2}\\
\textsf{Choosing}\, (x^2, -y, 0)\, \textsf{as multipliers, we have}\\
x^2\mathrm{d}x - y\mathrm{d}y = 0 \\
\textsf{Integrating both sides, we have} \\
\int x^2\mathrm{d}x - \int y\mathrm{d}y = C_1 \\
\frac{x^3}{3} - \frac{y^2}{2} =c \\
\textsf{Comparing the first and the last differential equations}\\
\frac{\mathrm{d}x}{yz} = \frac{\mathrm{d}z}{y^2 x}\\
yx\mathrm{d}x - z\mathrm{d}z = 0\\
\textsf{But}\\
x^3/3 - y^2/2 = c \\
y = \sqrt{\frac{2x^3}{3} + C} \\
\therefore \int x\sqrt{\frac{2x^3}{3} + C}\, \mathrm{d}x - \frac{z^2}{2} = C_2\\
\textsf{The Integral cannot be expressed in simpler}\\ \textsf{terms and as such it can be expressed}\\\textsf{in terms of advanced functions like the}\\\textsf{hypergeometric function. We can hence}\\\textsf{write the Integral in terms of know}\\\textsf{functions if}\,C = 0.\\
\therefore \int x\sqrt{\frac{2x^3}{3}}\, \mathrm{d}x - \frac{z^2}{2} = C_2\\
\frac{2}{7}\sqrt{\frac{2}{3}} x^{\frac{7}{2}} - \frac{z^2}{2} = C_2\\
\textsf{So, a solution of the given PDE is}\, \\ \phi\left(\frac{x^3}{3} - \frac{y^2}{2}, \frac{2}{7}\sqrt{\frac{2}{3}} x^{\frac{7}{2}} - \frac{z^2}{2}\right) = 0 The given partial differential equation is yz p + x 2 z q = y 2 x d z = ∂ x ∂ z d x + ∂ y ∂ z d y d z = x y 2 , d x = yz , d y = x 2 z The Lagrange’s auxiliary equations for the given PDE is yz d x = x 2 z d y = x y 2 d z Choosing ( x 2 , − y , 0 ) as multipliers, we have x 2 d x − y d y = 0 Integrating both sides, we have ∫ x 2 d x − ∫ y d y = C 1 3 x 3 − 2 y 2 = c Comparing the first and the last differential equations yz d x = y 2 x d z y x d x − z d z = 0 But x 3 /3 − y 2 /2 = c y = 3 2 x 3 + C ∴ ∫ x 3 2 x 3 + C d x − 2 z 2 = C 2 The Integral cannot be expressed in simpler terms and as such it can be expressed in terms of advanced functions like the hypergeometric function. We can hence write the Integral in terms of know functions if C = 0. ∴ ∫ x 3 2 x 3 d x − 2 z 2 = C 2 7 2 3 2 x 2 7 − 2 z 2 = C 2 So, a solution of the given PDE is ϕ ( 3 x 3 − 2 y 2 , 7 2 3 2 x 2 7 − 2 z 2 ) = 0
Comments