Question #138217
λλA particle falls from rest in a medium in which the resistance is λv^2 per unit mass, v being velocity of the particle at time t. Prove that the distance fallen in time to is 1/λ[Incos(t(√gλ))],where g is the acceleration due to gravity
1
Expert's answer
2020-10-19T18:21:57-0400

Let mm be the mass of the particle. The weight of the particle is mgmg and the drag force is mλv2m\lambda v^2 .

The equation of motion of the particle is

mdvdt=mgmλv2dvdt=gλv2dvdt=g(1λgv2)dv1λgv2=gdtm\frac{dv}{dt}=mg-m\lambda v^2\\ \Rightarrow \frac{dv}{dt}=g-\lambda v^2\\ \Rightarrow \frac{dv}{dt}=g(1-\frac{\lambda }{g}v^2)\\ \Rightarrow \frac{dv}{1-\frac{\lambda }{g}v^2}=gdt

Integrating both sides,

dv1λgv2=gdt+C1dv1λgv2=gt+C1 ......(1)\int \frac{dv}{1-\frac{\lambda }{g}v^2}=g\int dt+C_1\\ \int \frac{dv}{1-\frac{\lambda }{g}v^2}=gt+C_1\ \quad ......(1)

where C1C_1 is the constant of integration.

Let z=λg vdz=λg dvz=\sqrt{\frac{\lambda}{g}}\ v\Rightarrow dz=\sqrt{\frac{\lambda}{g}}\ dv

From (1), gλdz1z2=gt+C1\sqrt{\frac{g}{\lambda}}\int \frac{dz}{1-z^2}=gt+C_1

gλ tanh1(z)=gt+C1\therefore \sqrt{\frac{g}{\lambda}}\ \tanh^{-1}(z)=gt+C_1 since dz1z2=tanh1(z)\int \frac{dz}{1-z^2}=\tanh^{-1}(z)

Substituting z=λg vz=\sqrt{\frac{\lambda}{g}}\ v ,

gλ tanh1(λg v)=gt+C1 .......(2)\sqrt{\frac{g}{\lambda}}\ \tanh^{-1}\left(\sqrt{\frac{\lambda}{g}}\ v\right)=gt+C_1\ \quad .......(2)

At t=0,v=0t=0, v=0

gλ tanh1(0)=0+C1C1=0\Rightarrow \sqrt{\frac{g}{\lambda}}\ \tanh^{-1}(0)=0+C_1\\ \Rightarrow C_1=0 since tanh1(0)=0\tanh^{-1}(0)=0

From (2),

gλ tanh1(λg v)=gttanh1(λg v)=gtλgtanh1(λg v)=gλ tλg v=tanh(gλ t)v=gλtanh(gλ t)dxdt=gλtanh(gλ t)dx=gλtanh(gλ t)dt\sqrt{\frac{g}{\lambda}}\ \tanh^{-1}\left(\sqrt{\frac{\lambda}{g}}\ v\right)=gt\\ \Rightarrow \tanh^{-1}\left(\sqrt{\frac{\lambda}{g}}\ v\right)=gt\sqrt{\frac{\lambda}{g}}\\ \Rightarrow \tanh^{-1}\left(\sqrt{\frac{\lambda}{g}}\ v\right)=\sqrt{g\lambda }\ t\\ \Rightarrow \sqrt{\frac{\lambda}{g}}\ v=\tanh(\sqrt{g\lambda }\ t)\\ \Rightarrow v=\sqrt{\frac{g}{\lambda}}\tanh(\sqrt{g\lambda }\ t)\\ \Rightarrow \frac{dx}{dt}=\sqrt{\frac{g}{\lambda}}\tanh(\sqrt{g\lambda }\ t)\\ \Rightarrow dx=\sqrt{\frac{g}{\lambda}}\tanh(\sqrt{g\lambda }\ t)dt\\

Integrating,

x=gλtanh(gλ t)dt+C2 .......(3)x=\sqrt{\frac{g}{\lambda}}\int \tanh(\sqrt{g\lambda }\ t)dt+C_2\ \quad .......(3)

where C2C_2 is the integration constant.

Let y=gλ tdy=gλ dty=\sqrt{g\lambda }\ t\Rightarrow dy=\sqrt{g\lambda }\ dt

From (3),

x=gλ 1gλtanh(y)dy+C2x=1λtanh(y)dy+C2x=1λlncosh(y)+C2x=\sqrt{\frac{g}{\lambda}}\ \frac{1}{\sqrt{g\lambda }}\int \tanh(y)dy+C_2\\ \Rightarrow x=\frac{1}{\lambda} \int \tanh(y)dy+C_2\\ \Rightarrow x=\frac{1}{\lambda} \ln|\cosh(y)|+C_2 since tanh(y)dy=lncosh(y)\int \tanh(y)dy=\ln |\cosh(y)|

Substituting y=gλ ty=\sqrt{g\lambda }\ t ,

x=1λlncosh(gλ t)+C2 .......(4)x=\frac{1}{\lambda} \ln|\cosh(\sqrt{g\lambda }\ t)|+C_2\ \quad .......(4)

At t=0,x=0t=0, x=0

0=1λlncosh(0)+C2\Rightarrow 0=\frac{1}{\lambda} \ln|\cosh(0)|+C_2

Since cosh(0)=1 and ln(1)=0\cosh(0)=1 \ and\ \ln(1)=0

C2=0\Rightarrow C_2=0

From (4),

x=1λlncosh(gλ t)x=\frac{1}{\lambda} \ln|\cosh(\sqrt{g\lambda }\ t)|

Thus, the distance fallen in time tt is 1λlncosh(gλ t)\frac{1}{\lambda} \ln|\cosh(\sqrt{g\lambda }\ t)|


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS