Let m m m be the mass of the particle. The weight of the particle is m g mg m g and the drag force is m λ v 2 m\lambda v^2 mλ v 2 .
The equation of motion of the particle is
m d v d t = m g − m λ v 2 ⇒ d v d t = g − λ v 2 ⇒ d v d t = g ( 1 − λ g v 2 ) ⇒ d v 1 − λ g v 2 = g d t m\frac{dv}{dt}=mg-m\lambda v^2\\
\Rightarrow \frac{dv}{dt}=g-\lambda v^2\\
\Rightarrow \frac{dv}{dt}=g(1-\frac{\lambda }{g}v^2)\\
\Rightarrow \frac{dv}{1-\frac{\lambda }{g}v^2}=gdt m d t d v = m g − mλ v 2 ⇒ d t d v = g − λ v 2 ⇒ d t d v = g ( 1 − g λ v 2 ) ⇒ 1 − g λ v 2 d v = g d t
Integrating both sides,
∫ d v 1 − λ g v 2 = g ∫ d t + C 1 ∫ d v 1 − λ g v 2 = g t + C 1 . . . . . . ( 1 ) \int \frac{dv}{1-\frac{\lambda }{g}v^2}=g\int dt+C_1\\
\int \frac{dv}{1-\frac{\lambda }{g}v^2}=gt+C_1\ \quad ......(1) ∫ 1 − g λ v 2 d v = g ∫ d t + C 1 ∫ 1 − g λ v 2 d v = g t + C 1 ...... ( 1 )
where C 1 C_1 C 1 is the constant of integration.
Let z = λ g v ⇒ d z = λ g d v z=\sqrt{\frac{\lambda}{g}}\ v\Rightarrow dz=\sqrt{\frac{\lambda}{g}}\ dv z = g λ v ⇒ d z = g λ d v
From (1), g λ ∫ d z 1 − z 2 = g t + C 1 \sqrt{\frac{g}{\lambda}}\int \frac{dz}{1-z^2}=gt+C_1 λ g ∫ 1 − z 2 d z = g t + C 1
∴ g λ tanh − 1 ( z ) = g t + C 1 \therefore \sqrt{\frac{g}{\lambda}}\ \tanh^{-1}(z)=gt+C_1 ∴ λ g tanh − 1 ( z ) = g t + C 1 since ∫ d z 1 − z 2 = tanh − 1 ( z ) \int \frac{dz}{1-z^2}=\tanh^{-1}(z) ∫ 1 − z 2 d z = tanh − 1 ( z )
Substituting z = λ g v z=\sqrt{\frac{\lambda}{g}}\ v z = g λ v ,
g λ tanh − 1 ( λ g v ) = g t + C 1 . . . . . . . ( 2 ) \sqrt{\frac{g}{\lambda}}\ \tanh^{-1}\left(\sqrt{\frac{\lambda}{g}}\ v\right)=gt+C_1\ \quad .......(2) λ g tanh − 1 ( g λ v ) = g t + C 1 ....... ( 2 )
At t = 0 , v = 0 t=0, v=0 t = 0 , v = 0
⇒ g λ tanh − 1 ( 0 ) = 0 + C 1 ⇒ C 1 = 0 \Rightarrow \sqrt{\frac{g}{\lambda}}\ \tanh^{-1}(0)=0+C_1\\
\Rightarrow C_1=0 ⇒ λ g tanh − 1 ( 0 ) = 0 + C 1 ⇒ C 1 = 0 since tanh − 1 ( 0 ) = 0 \tanh^{-1}(0)=0 tanh − 1 ( 0 ) = 0
From (2),
g λ tanh − 1 ( λ g v ) = g t ⇒ tanh − 1 ( λ g v ) = g t λ g ⇒ tanh − 1 ( λ g v ) = g λ t ⇒ λ g v = tanh ( g λ t ) ⇒ v = g λ tanh ( g λ t ) ⇒ d x d t = g λ tanh ( g λ t ) ⇒ d x = g λ tanh ( g λ t ) d t \sqrt{\frac{g}{\lambda}}\ \tanh^{-1}\left(\sqrt{\frac{\lambda}{g}}\ v\right)=gt\\
\Rightarrow \tanh^{-1}\left(\sqrt{\frac{\lambda}{g}}\ v\right)=gt\sqrt{\frac{\lambda}{g}}\\
\Rightarrow \tanh^{-1}\left(\sqrt{\frac{\lambda}{g}}\ v\right)=\sqrt{g\lambda }\ t\\
\Rightarrow \sqrt{\frac{\lambda}{g}}\ v=\tanh(\sqrt{g\lambda }\ t)\\
\Rightarrow v=\sqrt{\frac{g}{\lambda}}\tanh(\sqrt{g\lambda }\ t)\\
\Rightarrow \frac{dx}{dt}=\sqrt{\frac{g}{\lambda}}\tanh(\sqrt{g\lambda }\ t)\\
\Rightarrow dx=\sqrt{\frac{g}{\lambda}}\tanh(\sqrt{g\lambda }\ t)dt\\ λ g tanh − 1 ( g λ v ) = g t ⇒ tanh − 1 ( g λ v ) = g t g λ ⇒ tanh − 1 ( g λ v ) = g λ t ⇒ g λ v = tanh ( g λ t ) ⇒ v = λ g tanh ( g λ t ) ⇒ d t d x = λ g tanh ( g λ t ) ⇒ d x = λ g tanh ( g λ t ) d t
Integrating,
x = g λ ∫ tanh ( g λ t ) d t + C 2 . . . . . . . ( 3 ) x=\sqrt{\frac{g}{\lambda}}\int \tanh(\sqrt{g\lambda }\ t)dt+C_2\ \quad .......(3) x = λ g ∫ tanh ( g λ t ) d t + C 2 ....... ( 3 )
where C 2 C_2 C 2 is the integration constant.
Let y = g λ t ⇒ d y = g λ d t y=\sqrt{g\lambda }\ t\Rightarrow dy=\sqrt{g\lambda }\ dt y = g λ t ⇒ d y = g λ d t
From (3),
x = g λ 1 g λ ∫ tanh ( y ) d y + C 2 ⇒ x = 1 λ ∫ tanh ( y ) d y + C 2 ⇒ x = 1 λ ln ∣ cosh ( y ) ∣ + C 2 x=\sqrt{\frac{g}{\lambda}}\ \frac{1}{\sqrt{g\lambda }}\int \tanh(y)dy+C_2\\
\Rightarrow x=\frac{1}{\lambda} \int \tanh(y)dy+C_2\\
\Rightarrow x=\frac{1}{\lambda} \ln|\cosh(y)|+C_2 x = λ g g λ 1 ∫ tanh ( y ) d y + C 2 ⇒ x = λ 1 ∫ tanh ( y ) d y + C 2 ⇒ x = λ 1 ln ∣ cosh ( y ) ∣ + C 2 since ∫ tanh ( y ) d y = ln ∣ cosh ( y ) ∣ \int \tanh(y)dy=\ln |\cosh(y)| ∫ tanh ( y ) d y = ln ∣ cosh ( y ) ∣
Substituting y = g λ t y=\sqrt{g\lambda }\ t y = g λ t ,
x = 1 λ ln ∣ cosh ( g λ t ) ∣ + C 2 . . . . . . . ( 4 ) x=\frac{1}{\lambda} \ln|\cosh(\sqrt{g\lambda }\ t)|+C_2\ \quad .......(4) x = λ 1 ln ∣ cosh ( g λ t ) ∣ + C 2 ....... ( 4 )
At t = 0 , x = 0 t=0, x=0 t = 0 , x = 0
⇒ 0 = 1 λ ln ∣ cosh ( 0 ) ∣ + C 2 \Rightarrow 0=\frac{1}{\lambda} \ln|\cosh(0)|+C_2 ⇒ 0 = λ 1 ln ∣ cosh ( 0 ) ∣ + C 2
Since cosh ( 0 ) = 1 a n d ln ( 1 ) = 0 \cosh(0)=1 \ and\ \ln(1)=0 cosh ( 0 ) = 1 an d ln ( 1 ) = 0
⇒ C 2 = 0 \Rightarrow C_2=0 ⇒ C 2 = 0
From (4),
x = 1 λ ln ∣ cosh ( g λ t ) ∣ x=\frac{1}{\lambda} \ln|\cosh(\sqrt{g\lambda }\ t)| x = λ 1 ln ∣ cosh ( g λ t ) ∣
Thus, the distance fallen in time t t t is 1 λ ln ∣ cosh ( g λ t ) ∣ \frac{1}{\lambda} \ln|\cosh(\sqrt{g\lambda }\ t)| λ 1 ln ∣ cosh ( g λ t ) ∣
Comments