Question #138621
show that the Fourier series of
f(x)=e^x (-π,π)
Is
1/π sin hπ+∑_(n=1)^∞▒〖(2 sin hπ)/π(1+n^2 ) (-1)^n (cos nx-nsin nx)〗
1
Expert's answer
2020-10-16T11:52:50-0400

The Fourier series is given asf(x)=a02+n=1(ancos(nx)+bnsin(nx))a0=1πππexdx=1π(exππ)=1π(eπeπ)=2sinh(π)πan=1πππexcos(nx)dx=1nπππexd(sin(nx))=1nπ(exsin(nx)ππππexsin(nx)dx)=1nπ(eπsin(nπ)eπsin(nπ)+1nππexd(cos(nx)))sin(nπ)=0nZan=1nπ(1nππexd(cos(nx)))=1n2π(excos(nx)ππππexcos(nx)dx)=1n2π(eπcos(nπ)eπcos(nπ)πan)cos(nπ)=(1)nnZan=1n2π((eπeπ)(1)nπan)=1n2π(2sinh(π)(1)nπan)an+an1n2=2sinh(π)(1)nn2πan(1+1n2)=2sinh(π)(1)nn2πan(1+n2n2)=2sinh(π)(1)nn2π    an=2sinh(π)(1)n(n2+1)πbn=1πππexsin(nx)dx=1nπππexd(cos(nx))=1nπ(excos(nx)ππππexcos(nx)dx)=1nπ(eπcos(nπ)eπcos(nπ)ππexcos(nx)dx)=1nπ(2sinh(π)(1)nππexcos(nx)dx)=1nπ(2sinh(π)(1)nπan)=2sinh(π)(1)nnπ+ann=2sinh(π)(1)nnπ+2sinh(π)(1)nn(n2+1)π=2sinh(π)(1)nnπ(1+1n2+1)    bn=2n(1)n+1sinh(π)(n2+1)πThe Fourier series for the function isf(x)=sinh(π)π+2n=1(1)nsinh(π)π(cos(nx)n2+1nsin(nx)n2+1)\displaystyle\textsf{The Fourier series is given as}\\ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)) \\ \begin{aligned} a_0 &= \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \, \mathrm{d} x \\&= \frac{1}{\pi}(e^x \vert_{-\pi}^{\pi}) \\&=\frac{1}{\pi} (e^{\pi} - e^{-\pi}) \\&=\frac{2\sinh(\pi)}{\pi} \end{aligned} \\ \begin{aligned} a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \cos(nx) \, \mathrm{d} x \\&= \frac{1}{n\pi} \int_{-\pi}^{\pi} e^x \, \mathrm{d}(\sin(nx)) \\&= \frac{1}{n\pi} \left(e^x \sin(nx) \vert_{-\pi}^{\pi} - \int_{-\pi}^{\pi} e^x \sin(nx) \, \mathrm{d} x\right) \\&= \frac{1}{n\pi} \left(e^{\pi} \sin(n\pi) - e^{\pi} \sin(-n\pi) + \frac{1}{n}\int_{-\pi}^{\pi} e^x\, \mathrm{d}(\cos(nx))\right) \end{aligned} \\ \sin(n\pi) = 0 \hspace{0.5cm} \forall \, n \in \mathbb{Z} \\ \begin{aligned} \therefore a_n &= \frac{1}{n\pi} \left(\frac{1}{n}\int_{-\pi}^{\pi} e^x\, \mathrm{d}(\cos(nx))\right) \\&= \frac{1}{n^2\pi} \left(e^x \cos(nx) \vert_{-\pi}^{\pi} - \int_{-\pi}^{\pi} e^x\cos(nx) \, \mathrm{d} x\right) \\&=\frac{1}{n^2\pi} \left(e^{\pi} \cos(n\pi) - e^{\pi} \cos(-n\pi) - \pi a_n\right) \end{aligned} \\ \cos(n\pi) = (-1)^n \hspace{0.5cm}\forall \, n \in \mathbb{Z} \\ \begin{aligned} \therefore a_n &= \frac{1}{n^2\pi} \left((e^{\pi} - e^{\pi})(-1)^n - \pi a_n\right) \\&=\frac{1}{n^2\pi} \left(2\sinh(\pi)(-1)^n - \pi a_n\right)\\ a_n + a_n \frac{1}{n^2} &= \frac{2\sinh(\pi)(-1)^n}{n^2\pi} \\ a_n\left(1 + \frac{1}{n^2}\right) &= \frac{2\sinh(\pi)(-1)^n}{n^2\pi}\\ a_n \left(\frac{1 + n^2}{n^2}\right) &= \frac{2\sinh(\pi)(-1)^n}{n^2\pi}\\ \implies a_n &= \frac{2\sinh(\pi)(-1)^n}{(n^2 + 1)\pi} \end{aligned} \\ \begin{aligned} b_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \sin(nx) \, \mathrm{d} x \\&=-\frac{1}{n\pi} \int_{-\pi}^{\pi} e^x \, \mathrm{d}(\cos(nx)) \\&=-\frac{1}{n\pi} \left(e^x \cos(nx) \vert_{-\pi}^{\pi} - \int_{-\pi}^{\pi} e^x \cos(nx) \, \mathrm{d} x\right) \\&=-\frac{1}{n\pi} \left(e^{\pi} \cos(n\pi) - e^{\pi} \cos(-n\pi) - \int_{-\pi}^{\pi} e^x \cos(nx) \, \mathrm{d} x\right) \\&= -\frac{1}{n\pi} \left(2\sinh(\pi)(-1)^n - \int_{-\pi}^{\pi} e^x \cos(nx) \, \mathrm{d} x\right) \\&= -\frac{1}{n\pi} \left(2\sinh(\pi)(-1)^n - \pi a_n\right) \\&= -\frac{2\sinh(\pi)(-1)^n}{n\pi} + \frac{a_n}{n} \\&= -\frac{2\sinh(\pi)(-1)^n}{n\pi} + \frac{2\sinh(\pi)(-1)^n}{n(n^2 + 1)\pi} \\&=\frac{2\sinh(\pi)(-1)^n}{n\pi}\left(-1 + \frac{1}{n^2 + 1}\right) \\\implies b_n &= \frac{2n(-1)^{n + 1}\sinh(\pi)}{(n^2 + 1)\pi} \end{aligned} \\ \therefore \textsf{The Fourier series for the function is} \\ f(x) = \frac{\sinh(\pi)}{\pi}+ 2\sum_{n=1}^{\infty} \frac{(-1)^n\sinh(\pi)}{\pi} \left(\frac{\cos(nx)}{n^2 + 1} - \frac{n\sin(nx)}{n^2 + 1}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS