This is a Pfaffian differential equation in threevariables and we must verify its integrabiltyand determine its primitive.(1+yz)dx+(xz−x2)dy−(1+xy)dz=0The necessary and sufficient conditionfor iintegrability isX⋅curlX=0X=(1+yz,xz−x2,−1−xy),so that∇×X=∣∣i∂x∂1+yzj∂y∂xz−x2k∂z∂−1−xy∣∣=i(∂y∂(−1−xy)−∂z∂(xz−x2))−j(∂x∂(−1−xy)−∂z∂(1+yz))+k(∂x∂(xz−x2)−∂y∂(1+yz))=i(−x−x)−j(−y−y)+k(z−2x−z)=−2xi+2yj−2xk∴(1+yz,xz−x2,−1−xy)⋅(−2x,2y,−2x)=−2x(1+yz)+2y(xz−x2)+2x(1+xy)=−2x−2xyz+2xyz−2yx2+2x+2x2y=0Thus, the given equation is integrable.Solving by Inspection(1+yz)dx+(xz−x2)dy−(1+xy)dz=0(1+yz)dx+(xz−x2)dy−(1+xy)dz=0−(1+yz)dx−(xz−x2)dy−(1+xy)dz=0(1+yx)dz−(1+yx)dx−x(z−x)dy−y(z−x)dx=0(1+yx)d(z−x)−(xdy+ydx)(z−x)=0(1+yx)d(z−x)−d(1+xy)(z−x)=0⟹z−xd(z−x)−1+xyd(1+xy)=0Integrating both sides, we have∫z−xd(z−x)−∫1+xyd(1+xy)=∫0dxln(z−x)−ln(1+xy)=C1ln(z−x)=ln(A(1+xy)),{C1=ln(A)}⟹z=x+A(1+xy)∴z=x+A(1+yx)is a solution to the Pfaffian differential equation
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments