The Fourier series of a continuous functionf(x)is defiined asf(x)=2a0+n=1∑∞(ancos(nx)+bnsin(nx))The period of of the function is2π,Hence,a0anbn=π1∫−ππexdx=π1∫−ππexcos(nx)dx=π1∫−ππexsin(nx)dxCalculating each term, we havea0=π1∫−ππexdx=π1(ex∣−ππ)=π1(eπ−e−π)=π2sinh(π)an=π1∫−ππexcos(nx)dx=nπ1∫−ππexd(sin(nx))=nπ1(exsin(nx)∣−ππ−∫−ππexsin(nx)dx)=nπ1(eπsin(nπ)−eπsin(−nπ)+n1∫−ππexd(cos(nx)))sin(nπ)=0∀n∈Z∴an=nπ1(n1∫−ππexd(cos(nx)))=n2π1(excos(nx)∣−ππ−∫−ππexcos(nx)dx)=n2π1(eπcos(nπ)−eπcos(−nπ)−πan)cos(nπ)=(−1)n∀n∈Z∴anan+n2anan(1+n21)an(n21+n2)an=n2π1((eπ−eπ)(−1)n−πan)=n2π1(2sinh(π)(−1)n−πan)=n2π2sinh(π)(−1)n=n2π2sinh(π)(−1)n=n2π2sinh(π)(−1)n=(n2+1)π2sinh(π)(−1)nbn=π1∫−ππexsin(nx)dx=−nπ1∫−ππexd(cos(nx))=−nπ1(excos(nx)∣−ππ−∫−ππexcos(nx)dx)=−nπ1(eπcos(nπ)−eπcos(−nπ)−∫−ππexcos(nx)dx)=−nπ1(2sinh(π)(−1)n−∫−ππexcos(nx)dx)=−nπ1(2sinh(π)(−1)n−πan)=−nπ2sinh(π)(−1)n+nan=−nπ2sinh(π)(−1)n+n(n2+1)π2sinh(π)(−1)n=nπ2sinh(π)(−1)n(−1+n2+11)=(n2+1)π2n(−1)n+1sinh(π)∴The Fourier series of the continuous function isf(x)=πsinh(π)+2n=1∑∞(n2+1)π(−1)nsinh(π)(cos(nx)−nsin(nx))
Comments