Question #138692
Using U= 1/2x^2 and V= 1/2y^2, solve the partial differential equation
1/x^2∂^2/∂x^2 - 1/x^3∂z/∂x= 1/y^2∂^2z/∂y^2- 1/y^3∂z/∂y
1
Expert's answer
2020-10-18T17:02:43-0400

1x22zx21x3zx=1y22zy21y3zy\frac{1}{x^2}\frac{∂^2z}{∂x^2} - \frac{1}{x^3}\frac{∂z}{∂x}= \frac{1}{y^2}\frac{∂^2z}{∂y^2}- \frac{1}{y^3}\frac{∂z}{∂y}



Putting, X=12x2,Y=12y2X = \frac{1}{2}x^2, Y = \frac{1}{2}y^2

then, xdx=dX,ydy=dYxdx = dX, ydy = dY

so,

zX=zxxX=1xzx\frac{\partial z}{\partial X} =\frac{\partial z}{\partial x}\frac{\partial x}{\partial X} = \frac{1}{x}\frac{\partial z}{\partial x}

and 2zX2=X(zX)=x(1xzx)xX\frac{\partial^2 z}{\partial X^2} = \frac{\partial }{\partial X}(\frac{\partial z}{\partial X}) = \frac{\partial }{\partial x}(\frac{1 }{ x}\frac{\partial z}{\partial x})\frac{\partial x}{\partial X}

=1x3zx+1x22zx2= -\frac{1}{x^3}\frac{\partial z}{\partial x} + \frac{1}{x^2}\frac{\partial^2 z}{\partial x^2}



Similarly, 2zY2=1y3zy+1y22zy2\frac{\partial^2 z}{\partial Y^2}= -\frac{1}{y^3}\frac{\partial z}{\partial y} + \frac{1}{y^2}\frac{\partial^2 z}{\partial y^2}

This transformation will lead the equation,

2zX22zY2=0\frac{\partial^2 z}{\partial X^2} - \frac{\partial^2 z}{\partial Y^2} = 0


(D2D2)z=0(D^2-D^{'2})z = 0 where

D2=2X2,D2=2Y2D^2 = \frac{\partial^2 }{\partial X^2}, D^{'2} = \frac{\partial^2 }{\partial Y^2}

(D+D)(DD)z=0(D +D')(D -D')z = 0


solution of the equation,

z=ϕ1(YX)+ϕ2(Y+X)z = \phi_1(Y-X)+\phi_2(Y+X)

z=f1(y2x2)+f2(y2+x2)z = f_1(y^2-x^2) + f_2(y^2+x^2)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS