x21∂x2∂2z−x31∂x∂z=y21∂y2∂2z−y31∂y∂z
Putting, X=21x2,Y=21y2
then, xdx=dX,ydy=dY
so,
∂X∂z=∂x∂z∂X∂x=x1∂x∂z
and ∂X2∂2z=∂X∂(∂X∂z)=∂x∂(x1∂x∂z)∂X∂x
=−x31∂x∂z+x21∂x2∂2z
Similarly, ∂Y2∂2z=−y31∂y∂z+y21∂y2∂2z
This transformation will lead the equation,
∂X2∂2z−∂Y2∂2z=0
(D2−D′2)z=0 where
D2=∂X2∂2,D′2=∂Y2∂2(D+D′)(D−D′)z=0
solution of the equation,
z=ϕ1(Y−X)+ϕ2(Y+X)
z=f1(y2−x2)+f2(y2+x2)
Comments