dx=(10y+6z)dy+6y, dx=(3y2+4yz)dy+(2yz+y2)dz, dx=y4-1dy+zdz
given,
dx=(10y+6z)dy+6ydx=(10y+6z)dy+6ydx=(10y+6z)dy+6y
Integrate both side we get,
x=5y2+6yz+6y+cx=5y^2+6yz+6y+cx=5y2+6yz+6y+c,
dx=(3y2+4yz)dy+(2yz+y2)dz(3y^2+4yz)dy+(2yz+y^2)dz(3y2+4yz)dy+(2yz+y2)dz
This is of the form
Mdy+Ndz
so the solution is,
Integrate both the sides,
x=y3+2zy2+cx=y^3+2zy^2+cx=y3+2zy2+c ,
dx=(y4−1)dy+zdz(y^4-1)dy+zdz(y4−1)dy+zdz
x=y55−y+z22+cx=\frac{y^5}{5}-y+\frac{z^2}{2}+cx=5y5−y+2z2+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments