Given, (y−xz)p+(x+yz)q=x2+y2.
This equation is of the form Pp+Qq=R (Lagrange's linear partial differential equation).
Here, P=y−xz,Q=(x+yz),R=x2+y2.
The subsidiary equations are
Pdx=Qdy=Rdzy−xzdx=(x+yz)dy=x2+y2dz −(1).
Using the method of multipliers in each fraction,
y(y−xz)ydx=x(x+yz)xdy=−1(x2+y2)−dz
=y(y−xz)+x(x+yz)−(x2+y2)ydx+xdy−dz
=y2−yxz+x2+xyz−x2−y2ydx+xdy−dz
=0ydx+xdy−dz
→ydx+xdy−dz=0
→d(xy)=dz
Integrating Both the sides
∫d(xy)=∫dz
xy=z+c 1
c1 =xy-z
Again using method of multiplier
=x(y−xz)xdx=−y(x+yz)−ydy=z(x2+y2)zdz
=xy−x2z−yx−y2z+zx2+zy2xdx−ydy+zdz
=0xdx−ydy+zdz
→xdx−ydy+zdz=0
Integrating above equation we get,
→2x2−2y2+2z2+c=0
→c2=y2−x2−z2
The solution of the given equation are
xy−z=c1 and x2−y2+z2+c2=0
Comments