Question #138947
Find the general solution of the pde
(y-zx)p+(x+yz)=x^2+y^2
1
Expert's answer
2020-10-22T18:00:36-0400

Given, (yxz)p+(x+yz)q=x2+y2(y-xz)p+(x+yz)q = x^{2}+y^{2}.

This equation is of the form Pp+Qq=RPp+Qq=R (Lagrange's linear partial differential equation).

Here, P=yxz,Q=(x+yz),R=x2+y2P = y-xz, Q=(x+yz), R = x^{2}+y^{2}.


The subsidiary equations are

dxP=dyQ=dzRdxyxz=dy(x+yz)=dzx2+y2           (1)\dfrac{dx}{P}=\dfrac{dy}{Q}=\dfrac{dz}{R}\\ \dfrac{dx}{y-xz}=\dfrac{dy}{(x+yz)}=\dfrac{dz}{x^{2}+y^{2}}~~~~~~~~~~~-(1).


Using the method of multipliers in each fraction,


ydxy(yxz)=xdyx(x+yz)=dz1(x2+y2)\dfrac{ydx}{y(y-xz)}=\dfrac{xdy}{x(x+yz)}=\dfrac{-dz}{-1(x^{2}+y^{2})}




=ydx+xdydzy(yxz)+x(x+yz)(x2+y2)\dfrac{ydx+xdy-dz}{y(y-xz)+x(x+yz)-(x^2+y^2)}


=ydx+xdydzy2yxz+x2+xyzx2y2\dfrac{ydx+xdy-dz}{y^2-yxz+x^2+xyz-x^2-y^2}


=ydx+xdydz0\dfrac{ydx+xdy-dz}{0}


ydx+xdydz=0\to ydx+xdy-dz=0


d(xy)=dz\to d(xy)=dz

Integrating Both the sides


d(xy)=dz\int d(xy)=\int dz

xy=z+cxy=z+c 1_1

c1_1 =xy-z


Again using method of multiplier


=xdxx(yxz)=ydyy(x+yz)=zdzz(x2+y2)\dfrac{xdx}{x(y-xz)}=\dfrac{-ydy}{-y(x+yz)}=\dfrac{zdz}{z(x^{2}+y^{2})}


=xdxydy+zdzxyx2zyxy2z+zx2+zy2\dfrac{xdx-ydy+zdz}{xy-x^2z-yx-y^2z+zx^2+zy^2}



=xdxydy+zdz0= \dfrac{xdx-ydy+zdz}{0}


xdxydy+zdz=0\to xdx-ydy+zdz=0


Integrating above equation we get,


x22y22+z22+c=0\to \dfrac{x^2}{2}-\dfrac{y^2}{2}+\dfrac{z^2}{2}+c=0


c2=y2x2z2\to c_2=y^2-x^2-z^2


The solution of the given equation are

xyz=c1xy-z=c_1 and x2y2+z2+c2=0x^2-y^2+z^2+c_2=0





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS