Question #137992
(x^2-x-2)y’+3xy=x^2-4x+4
1
Expert's answer
2020-10-13T17:30:53-0400

The given D.E is a lin ear 1st order differential equation:

(x2x2)dydx+3xy=(x24x+4)(x^2-x-2)\frac{dy}{dx}+3xy =( x^2-4x+4)



Now this can be rewritten as

dydx+3x(x2x2)y=(x24x+4)(x2x2)\frac{dy}{dx}+\frac{3x}{(x^2-x-2)}*y=\frac{(x^2-4x+4)}{(x^2-x-2)}

or,dydx+3x(x+1)(x2)y=(x2)2(x+1)(x2)or,dydx+3x(x+1)(x2)y=(x2)(x+1)or, \frac{dy}{dx}+\frac{3x}{(x+1)(x-2)}*y=\frac{(x-2)^2}{(x+1)(x-2)}\\or, \frac{dy}{dx}+\frac{3x}{(x+1)(x-2)}*y=\frac{(x-2)}{(x+1)}


Calculating INTEGRATING FACTOR (I.F)


I.F=e3x(x+1)(x2)dxI.F= e^{\int {\frac{3x}{(x+1)(x-2)}}dx}

Now3x(x+1)(x2)dx={1x+1+2x2}dxNow \int {\frac{3x}{(x+1)(x-2)}}dx = \int \{\frac{1}{x+1}+\frac{2}{x-2}\}dx

=1x+1dx+21x+2dx=\int \frac{1}{x+1}dx + 2\int \frac{1}{x+2}dx

=logx+1+2logx+2= log|x+1|+2log|x+2|

=log{(x+1)(x2)2}= log\{(x+1)(x-2)^2\}

I.F=elog{(x+1)(x2)2}=(x+1)(x2)2\therefore I.F = e^{log\{(x+1)(x-2)^2\}}=(x+1)(x-2)^2


The solution to the given D.E is


yI.F=I.F(x2)(x+1)dx+Cy*I.F=\int I.F*\frac{(x-2)}{(x+1)}dx + C

y(x+1)(x2)2={(x+1)(x2)2(x2)(x+1)}dx+Cor,y(x+1)(x2)2=(x2)3dx+C\therefore y* (x+1)(x-2)^2= \int \{(x+1)(x-2)^2\frac{(x-2)}{(x+1)}\}dx +C\\or, y* (x+1)(x-2)^2= \int (x-2)^3dx+C

or,y(x+1)(x2)2=(x2)44+Cor,y* (x+1)(x-2)^2= \frac{(x-2)^4}{4}+C


The required solution is

y(x+1)(x2)2=(x2)44+Cy* (x+1)(x-2)^2= \frac{(x-2)^4}{4}+C


ANSWER


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS