The given D.E is a lin ear 1st order differential equation:
(x2−x−2)dxdy+3xy=(x2−4x+4)
Now this can be rewritten as
dxdy+(x2−x−2)3x∗y=(x2−x−2)(x2−4x+4)
or,dxdy+(x+1)(x−2)3x∗y=(x+1)(x−2)(x−2)2or,dxdy+(x+1)(x−2)3x∗y=(x+1)(x−2)
Calculating INTEGRATING FACTOR (I.F)
I.F=e∫(x+1)(x−2)3xdx
Now∫(x+1)(x−2)3xdx=∫{x+11+x−22}dx
=∫x+11dx+2∫x+21dx
=log∣x+1∣+2log∣x+2∣
=log{(x+1)(x−2)2}
∴I.F=elog{(x+1)(x−2)2}=(x+1)(x−2)2
The solution to the given D.E is
y∗I.F=∫I.F∗(x+1)(x−2)dx+C
∴y∗(x+1)(x−2)2=∫{(x+1)(x−2)2(x+1)(x−2)}dx+Cor,y∗(x+1)(x−2)2=∫(x−2)3dx+C
or,y∗(x+1)(x−2)2=4(x−2)4+C
The required solution is
y∗(x+1)(x−2)2=4(x−2)4+C
ANSWER
Comments