Solution :
y′(x)=e2x2−3y(x)2y'(x) = \frac{e^{2x}}{2} - \frac{3 y(x)}{2}\\y′(x)=2e2x−23y(x)
Find the integration factor μ=e3x2\mu=e^\frac{3x}{2}μ=e23x
Put the equation in the form ((μ(x)∗y)′=μ(x)q(x): (e3x2y)′=e7x22(\mu(x)*y)'=\mu(x)q(x):\,(e^\frac{3x}{2}y)'= \frac{e^{\frac{7x}{2}}}{2}(μ(x)∗y)′=μ(x)q(x):(e23xy)′=2e27x
Solve: (e3x2y)′=e7x22(e^{\frac{3x}{2}}y)'= \frac{e^{\frac{7x}{2}}}{2}(e23xy)′=2e27x
y(x)=c1e3x2+e2x7y(x) = \frac{c_1}{e^\frac{3x}{2}} + \frac{e^{2 x}}{7}y(x)=e23xc1+7e2x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments