Question #137990
2y'+3y=e2x
1
Expert's answer
2020-10-14T13:17:58-0400

Solution :

y(x)=e2x23y(x)2y'(x) = \frac{e^{2x}}{2} - \frac{3 y(x)}{2}\\


Find the integration factor μ=e3x2\mu=e^\frac{3x}{2}

Put the equation in the form ((μ(x)y)=μ(x)q(x):(e3x2y)=e7x22(\mu(x)*y)'=\mu(x)q(x):\,(e^\frac{3x}{2}y)'= \frac{e^{\frac{7x}{2}}}{2}

Solve: (e3x2y)=e7x22(e^{\frac{3x}{2}}y)'= \frac{e^{\frac{7x}{2}}}{2}

y(x)=c1e3x2+e2x7y(x) = \frac{c_1}{e^\frac{3x}{2}} + \frac{e^{2 x}}{7}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS