Question #134699
Please solve the linear differential equations
1. dx/y+z = dy/-(x+z) = dz/x-y

2.(x^2D^2-3xD+5)y =x^2(logx)
1
Expert's answer
2020-09-23T18:05:29-0400
SolutionSolution

1. dx/y+z = dy/-(x+z) = dz/x-y

We solve it y Lagrange's multipliers method


(ldx+mdy+ndz)(lP+mQ+nR)=0lP+mQ+nR=0\frac{(ldx+mdy+ndz)}{(lP+mQ+nR)}=0\\ lP+mQ+nR=0\\

So,

ldx+mdy+ndz=0ldx+mdy+ndz=0

Here l,m,nl,m,n are multipliers

dxy+z=dyxz=dzxy,\frac{dx}{y+z}=\frac{dy}{-x-z}=\frac{dz}{x-y}, given.


So,

1dx+1dy+1dz=01dx+1dy+1dz=0


Since

1(y+z)+1(xz)+1(xy)=0,1(y+z)+1(-x-z)+1(x-y)=0,

1,1,11,1,1 are multipliers

And

x(y+z)+y(xz)+z(xy)=0,x(y+z)+y(-x-z)+z(x-y)=0,

So x,y,zx,y,z are multipliers


1dx+1dy+1dz=0\therefore 1dx+1dy+1dz=0

After integration

x+y+z=C1(i)x+y+z=C_1---------(i)

Also xdx+ydy+zdz=0xdx+ydy+zdz=0

After integration

x2+y2+z2=C2(ii)x^2+y^2+z^2=C_2---------(ii)


(i)(i) and (ii)(ii) are the required solutions


2.(x^2D^2-3xD+5)y =x^2(logx)


Let x=ezx=e^z and lnx=zln x=z

    dxdz=ez=x    dzdx=1x\implies \frac{dx}{dz}=e^z=x\\ \implies \frac{dz}{dx}=\frac{1}{x}


Now,

dydx=dydzdzdx=dydz1xxdydx=dydzif ddzθ,thenxDy=θy\frac{dy}{dx}=\frac{dy}{dz} \cdot \frac{dz}{dx} = \frac{dy}{dz} \cdot \frac{1}{x}\\ x \frac{dy}{dx} = \frac{dy}{dz}\\ if\ \frac{d}{dz} \equiv \theta, then\\ xDy= \theta y


Similarly,

x2D2y=θ(θ1)yx^2D^2y=\theta(\theta - 1) y

Now,

(θ2θ3θ+5)y=ze2z    (θ24θ+5)y=ze2z(\theta ^2 - \theta - 3\theta+5)y=ze^{2z}\\ \implies (\theta ^2 - 4\theta+5)y=ze^{2z}

This is a non homogeneous differential equation of the second order.


The remaining solution should be elementary.


The characteristic equation r24r+5r^2-4r+5 has the solutions r=2i,2+ir=2-i, 2+i . While the particular solution (by the method of undetermined coefficients) comes out to be Yp=e2zY_p=e^{2z}


Then the general solution (in terms of zz ) is given by,

y=yc+yp=C1ez(2+i)+C2ez(2i)+e2zy=y_c+y_p=C_1e^{z(2+i)}+C_2e^{z(2-i)}+e^{2z}

for arbitrary constants C1C_1 and C2.C_2.

y=C1x(2+i)+C2x(2i)+x2y=C_1x^{(2+i)}+C_2x^{(2-i)}+x^{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS