Given differential equation is
y z ( y + z ) d x + x z ( x + z ) d y + x y ( x + y ) d z = 0 yz(y+z)dx +xz(x+z)dy+xy(x+y)dz = 0 yz ( y + z ) d x + x z ( x + z ) d y + x y ( x + y ) d z = 0
Let X ⃗ = y z ( y + z ) i ^ + x z ( x + z ) j ^ + x y ( x + y ) k ^ \vec{X} = yz(y+z)\hat{i} +xz(x+z)\hat{j}+xy(x+y)\hat{k} X = yz ( y + z ) i ^ + x z ( x + z ) j ^ + x y ( x + y ) k ^
To check whether it is integral , X ⃗ . ( ∇ × X ⃗ ) = 0 \vec{X} .(\nabla\times{\vec{X}}) = 0 X . ( ∇ × X ) = 0
Now, ∇ × X ⃗ = ∣ i ^ j ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z y z ( y + z ) x z ( x + z ) x y ( x + y ) ∣ \nabla\times{\vec{X}} = \begin{vmatrix}
\hat{i} & \hat{j} &\hat{k}\\
\frac{\partial }{\partial x} & \frac{\partial }{\partial y} &\frac{\partial }{\partial z}\\
yz(y+z) & xz(x+z) & xy(x+y)
\end{vmatrix} ∇ × X = ∣ ∣ i ^ ∂ x ∂ yz ( y + z ) j ^ ∂ y ∂ x z ( x + z ) k ^ ∂ z ∂ x y ( x + y ) ∣ ∣
∇ × X ⃗ = 2 x ( y − z ) i ^ − 2 y ( x − z ) j ^ + 2 z ( x − y ) k ^ \nabla\times{\vec{X}} = 2x(y-z )\hat{i} - 2y(x-z)\hat{j} + 2z(x-y)\hat{k} ∇ × X = 2 x ( y − z ) i ^ − 2 y ( x − z ) j ^ + 2 z ( x − y ) k ^
Now, X ⃗ . ( ∇ × X ⃗ ) = [ y z ( y + z ) i ^ + x z ( x + z ) j ^ + x y ( x + y ) k ^ ] . [ 2 x ( y − z ) i ^ − 2 y ( x − z ) j ^ + 2 z ( x − y ) k ^ ] = 0 \vec{X} .(\nabla\times{\vec{X}}) =[ yz(y+z)\hat{i} +xz(x+z)\hat{j}+xy(x+y)\hat{k}
] .[2x(y-z )\hat{i} - 2y(x-z)\hat{j} + 2z(x-y)\hat{k}] = 0 X . ( ∇ × X ) = [ yz ( y + z ) i ^ + x z ( x + z ) j ^ + x y ( x + y ) k ^ ] . [ 2 x ( y − z ) i ^ − 2 y ( x − z ) j ^ + 2 z ( x − y ) k ^ ] = 0
Hence it it intergrable.
Let y = u x ⟹ d y = x d u + u d x y = ux \implies dy = xdu + udx y = ux ⟹ d y = x d u + u d x
and z = v x ⟹ d z = v d x + x d v z = vx \implies dz = vdx+xdv z = vx ⟹ d z = v d x + x d v
Then partial differential equation will be reduced to the form
u x v x ( u x + v x ) d x + v x 2 ( x + v x ) ( u d x + x d u ) + u x 2 ( x + u x ) ( v d x + x d v ) = 0 uxvx(ux+vx)dx + vx^2(x+vx)(udx+xdu) + ux^2(x+ux)(vdx+xdv) = 0 uxvx ( ux + vx ) d x + v x 2 ( x + vx ) ( u d x + x d u ) + u x 2 ( x + ux ) ( v d x + x d v ) = 0
It can be further reduced to
d x x + d u 2 u + d v 2 v − d u 2 ( u + v + 1 ) − d v 2 ( u + v + 1 ) = 0 \frac{dx}{x} + \frac{du}{2u}+\frac{dv}{2v}-\frac{du}{2(u+v+1)}-\frac{dv}{2(u+v+1)} = 0 x d x + 2 u d u + 2 v d v − 2 ( u + v + 1 ) d u − 2 ( u + v + 1 ) d v = 0
Integrating it, we get
x 2 u v u + v + 1 = C \frac{x^2 uv}{u+v+1} = C u + v + 1 x 2 uv = C
putting values of u and v,
x y z = C ( x + y + z ) xyz = C(x+y+z) x yz = C ( x + y + z )
Comments