Given differential equation is
"yz(y+z)dx +xz(x+z)dy+xy(x+y)dz = 0"
Let "\\vec{X} = yz(y+z)\\hat{i} +xz(x+z)\\hat{j}+xy(x+y)\\hat{k}"
To check whether it is integral , "\\vec{X} .(\\nabla\\times{\\vec{X}}) = 0"
Now, "\\nabla\\times{\\vec{X}} = \\begin{vmatrix}\n \\hat{i} & \\hat{j} &\\hat{k}\\\\\n \\frac{\\partial }{\\partial x} & \\frac{\\partial }{\\partial y} &\\frac{\\partial }{\\partial z}\\\\\n yz(y+z) & xz(x+z) & xy(x+y)\n\n\\end{vmatrix}"
"\\nabla\\times{\\vec{X}} = 2x(y-z )\\hat{i} - 2y(x-z)\\hat{j} + 2z(x-y)\\hat{k}"
Now, "\\vec{X} .(\\nabla\\times{\\vec{X}}) =[ yz(y+z)\\hat{i} +xz(x+z)\\hat{j}+xy(x+y)\\hat{k}\n] .[2x(y-z )\\hat{i} - 2y(x-z)\\hat{j} + 2z(x-y)\\hat{k}] = 0"
Hence it it intergrable.
Let "y = ux \\implies dy = xdu + udx"
and "z = vx \\implies dz = vdx+xdv"
Then partial differential equation will be reduced to the form
"uxvx(ux+vx)dx + vx^2(x+vx)(udx+xdu) + ux^2(x+ux)(vdx+xdv) = 0"
It can be further reduced to
"\\frac{dx}{x} + \\frac{du}{2u}+\\frac{dv}{2v}-\\frac{du}{2(u+v+1)}-\\frac{dv}{2(u+v+1)} = 0"
Integrating it, we get
"\\frac{x^2 uv}{u+v+1} = C"
putting values of u and v,
"xyz = C(x+y+z)"
Comments
Leave a comment