Given differential equation is
yz(y+z)dx+xz(x+z)dy+xy(x+y)dz=0
Let X=yz(y+z)i^+xz(x+z)j^+xy(x+y)k^
To check whether it is integral , X.(∇×X)=0
Now, ∇×X=∣∣i^∂x∂yz(y+z)j^∂y∂xz(x+z)k^∂z∂xy(x+y)∣∣
∇×X=2x(y−z)i^−2y(x−z)j^+2z(x−y)k^
Now, X.(∇×X)=[yz(y+z)i^+xz(x+z)j^+xy(x+y)k^].[2x(y−z)i^−2y(x−z)j^+2z(x−y)k^]=0
Hence it it intergrable.
Let y=ux⟹dy=xdu+udx
and z=vx⟹dz=vdx+xdv
Then partial differential equation will be reduced to the form
uxvx(ux+vx)dx+vx2(x+vx)(udx+xdu)+ux2(x+ux)(vdx+xdv)=0
It can be further reduced to
xdx+2udu+2vdv−2(u+v+1)du−2(u+v+1)dv=0
Integrating it, we get
u+v+1x2uv=C
putting values of u and v,
xyz=C(x+y+z)
Comments