Question #134137
yz(y+z)dx+zx(z+x)dy+xy(x+y)dz=0
1
Expert's answer
2020-09-21T16:14:17-0400

Given differential equation is

yz(y+z)dx+xz(x+z)dy+xy(x+y)dz=0yz(y+z)dx +xz(x+z)dy+xy(x+y)dz = 0


Let X=yz(y+z)i^+xz(x+z)j^+xy(x+y)k^\vec{X} = yz(y+z)\hat{i} +xz(x+z)\hat{j}+xy(x+y)\hat{k}

To check whether it is integral , X.(×X)=0\vec{X} .(\nabla\times{\vec{X}}) = 0

Now, ×X=i^j^k^xyzyz(y+z)xz(x+z)xy(x+y)\nabla\times{\vec{X}} = \begin{vmatrix} \hat{i} & \hat{j} &\hat{k}\\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} &\frac{\partial }{\partial z}\\ yz(y+z) & xz(x+z) & xy(x+y) \end{vmatrix}



×X=2x(yz)i^2y(xz)j^+2z(xy)k^\nabla\times{\vec{X}} = 2x(y-z )\hat{i} - 2y(x-z)\hat{j} + 2z(x-y)\hat{k}

Now, X.(×X)=[yz(y+z)i^+xz(x+z)j^+xy(x+y)k^].[2x(yz)i^2y(xz)j^+2z(xy)k^]=0\vec{X} .(\nabla\times{\vec{X}}) =[ yz(y+z)\hat{i} +xz(x+z)\hat{j}+xy(x+y)\hat{k} ] .[2x(y-z )\hat{i} - 2y(x-z)\hat{j} + 2z(x-y)\hat{k}] = 0

Hence it it intergrable.


Let y=ux    dy=xdu+udxy = ux \implies dy = xdu + udx

and z=vx    dz=vdx+xdvz = vx \implies dz = vdx+xdv

Then partial differential equation will be reduced to the form

uxvx(ux+vx)dx+vx2(x+vx)(udx+xdu)+ux2(x+ux)(vdx+xdv)=0uxvx(ux+vx)dx + vx^2(x+vx)(udx+xdu) + ux^2(x+ux)(vdx+xdv) = 0


It can be further reduced to

dxx+du2u+dv2vdu2(u+v+1)dv2(u+v+1)=0\frac{dx}{x} + \frac{du}{2u}+\frac{dv}{2v}-\frac{du}{2(u+v+1)}-\frac{dv}{2(u+v+1)} = 0

Integrating it, we get


x2uvu+v+1=C\frac{x^2 uv}{u+v+1} = C

putting values of u and v,


xyz=C(x+y+z)xyz = C(x+y+z)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS