Given differential equation is
y′′+3y′+2y=δ6(t) with conditions is y(0)=0,y′(0)=−1 .
Taking Laplace transform on both sides, we get
L(y′′)+3L(y′)+2L(y)=L(δ6(t))⟹s2Y+1+3sY+2Y=e−6s where Y=L(y) .
⟹(s2+3s+2)Y=e−6s−1⟹Y=s2+3s+2e−6s−1⟹y=L−1(s2+3s+2e−6s−1)
So, y=(((−e12−t+e6)δ6(t)−1)et+1)e−2t
Comments