Question #134077
Solve the IVP:

y" + 3y' + 2y = 6((delta)base 6)(t)

with conditions: y(0) = 0, y'(0) =-1.
1
Expert's answer
2020-09-21T12:41:23-0400

Given differential equation is

y+3y+2y=δ6(t)y''+3y'+2y = \delta_6(t) with conditions is y(0)=0,y(0)=1y(0)=0, y'(0)=-1 .

Taking Laplace transform on both sides, we get

L(y)+3L(y)+2L(y)=L(δ6(t))    s2Y+1+3sY+2Y=e6sL(y'')+ 3L(y')+2L(y )= L(\delta_6(t)) \\ \implies s^2 Y + 1 + 3 sY + 2 Y = e^{-6s} where Y=L(y)Y = L(y) .

    (s2+3s+2)Y=e6s1    Y=e6s1s2+3s+2    y=L1(e6s1s2+3s+2)\implies (s^2+3s+2) Y = e^{-6s} -1 \\ \implies Y =\frac{ e^{-6s} -1}{s^2+3s+2} \\ \implies y =L^{-1}(\frac{ e^{-6s} -1}{s^2+3s+2})

So, y=(((e12t+e6)δ6(t)1)et+1)e2ty =\left(\left(\left(- e^{12 - t} + e^{6}\right) \delta_6(t )- 1\right) e^{t} + 1\right) e^{- 2 t}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS