Solution
2x(y+z2)dxdz+y(2y+z2)dydz=z2
2x(y+z2)dx=y(2y+z2)dy=z2dz
y2xy2+2xyz2dx=x2xy2+xyz2dy=xyxyz2dz
2xy2+2xyz2−2xy2−xyz2−xyz2ydx−xdy−xydz=0ydx−xdy−xydz
ydx−xdy−xydz=0
xdx−ydy−dz=0
lnx−lny−z=c
z=ln(yx)+C 2.)
yz(z2+2z−2y)=x2
yz3+2yz2−2y2z=x2 Differentiate respect to x:
3yz2p+4yzp−2y2p=2x
py(3z2+4z−2y)=2x Differentiate respect to y:
z3+3z2yq+2z2+4yzq−4yz−2y2q=0
qy(3z2+4z−2y)+z3+2z2−4yz=0 ∴ we have:
3z2+4z−2y=py2x
p2xq+z3+2z2−4yz=0 Since
p=x1
q=y−1 then:
y−2x2+z3+2z2−4yz=0
−2x2+y(z3+2z2−4yz)=0
yz(z2+2z−4y)=2x2 So:
z2+2z−2yz2+2z−4y=2
z2+2z−4y=2z2+4z−4y
z2+2z=0 So we get that the statement can be proved if
z=0,or
z=−2
Comments