Question #128981

x(y^2+z)p-y(x^2+z)q=z(x^2-y^2)


1
Expert's answer
2020-08-11T18:21:14-0400
SolutionSolution

Given


x(y2+z)py(x2+z)q=z(x2y2)>(1)x(y^2+z)p-y(x^2+z)q=z(x^2-y^2)--------->(1)

Lagrange's auxiliary equation of (1) are;


dxx(y2+z)=dyy(x2+z)=dzz(x2y2)\frac{dx}{x(y^2+z)}=\frac{dy}{-y(x^2+z)}=\frac{dz}{z(x^2-y^2)}

Choosing (1x,1y,1z)(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}) as multipliers, we get


dxx,dyy,dzz=0\frac{dx}{x}, \frac{dy}{y}, \frac{dz}{z}=0

Integrating dxx+dyy+dzz=0\frac{dx}{x}+ \frac{dy}{y}+\frac{dz}{z}=0 we get xyz=c1xyz=c_1


Choosing (x,y,1)(x,y,-1) as multipliers, we have


xdx+ydydzx2y2+x2zy2x2y2zx2z+y2z=xdx+ydydz0\frac{xdx+ydy-dz}{x^2y^2+x^2z-y^2x^2-y^2z-x^2z+y^2z}=\frac{xdx+ydy-dz}{0}


Integrating xdx+ydydz=0xdx+ydy-dz=0


x22+y22z=c    x2+y22z=c2\frac{x^2}{2}+ \frac{y^2}{2}-z=c \implies x^2+y^2-2z=c_2

\therefore the solution is the system of equations:


xyz=c1xyz=c_1

x2+y22z=c2x^2+y^2-2z=c_2

Taking tt as a parameter, the given equation of the straight line x+y=0,z=1x+y=0,z=1 can be put in parametric form x=t,y=t,z=1x=t,y=-t,z=1


Using this,


xyz=c1xyz=c_1

x2+y22z=c2x^2+y^2-2z=c_2

May be written as,


t2=c1-t^2=c_1

2t22=c22t^2-2=c_2

Eliminating tt from the equation we get,


2(c1)2=c2    2c1+c2+2=02(-c_1)-2=c_2 \implies 2c_1+c_2+2=0

Putting values of c1c_1 and c2c_2 , the desired integral surface is,


2xyz+x2+y22z+2=0>Answer2xyz+x^2+y^2-2z+2=0------>Answer


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS