S o l u t i o n Solution S o l u t i o n
x y ′ ′ + y ′ + λ 2 y = 0 xy''+y'+ \frac{\lambda}{2 }y=0 x y ′′ + y ′ + 2 λ y = 0
y ′ ( 1 ) = 0 , y ′ ( e 2 π ) = 0 y'(1)=0,y'(e^2π)=0 y ′ ( 1 ) = 0 , y ′ ( e 2 π ) = 0
We begin by making some assumptions which will simplify the problem. This will turn our differential equation into a constant-coefficient equation.
Let
t = l n x t=lnx t = l n x
And
y ( x ) = ϕ ( l n x ) = ϕ ( t ) y(x)=\phi (ln x)=\phi(t) y ( x ) = ϕ ( l n x ) = ϕ ( t )
y ′ ( x ) = 1 x ( d ϕ ( t ) d t ) y'(x)=\frac{1}{x}(\frac{d \phi (t)}{dt}) y ′ ( x ) = x 1 ( d t d ϕ ( t ) )
y ′ ′ ( x ) = 1 x 2 ( d 2 ϕ ( t ) d t 2 − d ϕ ( t ) d t ) y''(x)=\frac{1}{x^2}(\frac{d^2 \phi (t)}{dt^2}-\frac{d \phi (t)}{dt}) y ′′ ( x ) = x 2 1 ( d t 2 d 2 ϕ ( t ) − d t d ϕ ( t ) )
Next, we substitute our new y's to the original equation and simplify until we get a second order, constant coefficient equation.
x ( 1 x 2 ( d 2 ϕ ( t ) d t 2 − d ϕ ( t ) d t ) ) + 1 x ( d ϕ ( t ) d t ) + λ 2 ϕ ( t ) = 0 x(\frac{1}{x^2}(\frac{d^2 \phi (t)}{dt^2}-\frac{d \phi (t)}{dt}))+\frac{1}{x}(\frac{d \phi (t)}{dt})+\frac{\lambda}{2 }\phi(t)=0 x ( x 2 1 ( d t 2 d 2 ϕ ( t ) − d t d ϕ ( t ) )) + x 1 ( d t d ϕ ( t ) ) + 2 λ ϕ ( t ) = 0
( d 2 ϕ ( t ) x d t 2 − d ϕ ( t ) x d t ) + ( d ϕ ( t ) x d t ) + λ 2 ϕ ( t ) = 0 (\frac{d^2 \phi (t)}{xdt^2}-\frac{d \phi (t)}{xdt})+(\frac{d \phi (t)}{xdt})+\frac{\lambda}{2 }\phi(t)=0 ( x d t 2 d 2 ϕ ( t ) − x d t d ϕ ( t ) ) + ( x d t d ϕ ( t ) ) + 2 λ ϕ ( t ) = 0
d 2 ϕ ( t ) x d t 2 + λ 2 ϕ ( t ) = 0 \frac{d^2 \phi (t)}{xdt^2}+\frac{\lambda}{2 }\phi(t)=0 x d t 2 d 2 ϕ ( t ) + 2 λ ϕ ( t ) = 0
This is easy to solve with a characteristic equation.
0 = r 2 + λ 2 x 0=r^2+\frac{\lambda}{2}x 0 = r 2 + 2 λ x
Solving for r we get
r 2 = − λ 2 x ⟹ r = − λ 2 x \sqrt{r^2}=\sqrt{-\frac{\lambda}{2}x} \implies r=\sqrt{-\frac{\lambda}{2}x} r 2 = − 2 λ x ⟹ r = − 2 λ x
We now write out the solution in exponential form.
ϕ ( t ) = C 1 ϵ ( − λ x 2 ) t + C 2 ϵ ( − λ x 2 ) t \phi(t)=C_1 \epsilon^{(\sqrt{\frac{-\lambda x}{2}})t}+C_2 \epsilon^{(\sqrt{\frac{-\lambda x}{2}})t} ϕ ( t ) = C 1 ϵ ( 2 − λ x ) t + C 2 ϵ ( 2 − λ x ) t Converting back to y ( x ) y(x) y ( x ) we get
y ( x ) = C 1 ϵ ( − λ x 2 ) l n x + C 2 ϵ ( − λ x 2 ) l n x y(x)=C_1 \epsilon^{(\sqrt{\frac{-\lambda x}{2}})ln x}+C_2 \epsilon^{(\sqrt{\frac{-\lambda x}{2}})ln x} y ( x ) = C 1 ϵ ( 2 − λ x ) l n x + C 2 ϵ ( 2 − λ x ) l n x Applying Euler's identities and picking two linear independent solutions
y ( x ) = C 3 ϵ 0 s i n ( − λ x 2 ) l n x + C 4 ϵ 0 c o s ( − λ x 2 ) l n x y(x)=C_3 \epsilon^{0}sin(\sqrt{\frac{-\lambda x}{2}})ln x+C_4 \epsilon^{0} cos (\sqrt{\frac{-\lambda x}{2}})ln x y ( x ) = C 3 ϵ 0 s in ( 2 − λ x ) l n x + C 4 ϵ 0 cos ( 2 − λ x ) l n x ϵ 0 = 1 \epsilon ^{0} = 1 ϵ 0 = 1
y ( x ) = C 3 s i n ( − λ x 2 ) l n x + C 4 c o s ( − λ x 2 ) l n x y(x)=C_3 sin(\sqrt{\frac{-\lambda x}{2}})ln x+C_4 cos (\sqrt{\frac{-\lambda x}{2}})ln x y ( x ) = C 3 s in ( 2 − λ x ) l n x + C 4 cos ( 2 − λ x ) l n x
Substituting our boundary conditions.
y = 0 , y ′ ( 1 ) = 0 , y ′ ( e 2 π ) = 0 y=0,y'(1)=0,y'(e^2π)=0 y = 0 , y ′ ( 1 ) = 0 , y ′ ( e 2 π ) = 0 Starting with y'(1) we get
y ( 1 ) = C 3 ( 1 ) s i n ( − λ x 2 l n ( 1 ) + C 4 ( 1 ) c o s ( − λ x 2 l n ( 1 ) y(1)=C_3(1)sin(\sqrt{\frac{-\lambda x}{2}ln(1)}+C_4(1)cos(\sqrt{\frac{-\lambda x}{2}ln(1)} y ( 1 ) = C 3 ( 1 ) s in ( 2 − λ x l n ( 1 ) + C 4 ( 1 ) cos ( 2 − λ x l n ( 1 )
y ( 1 ) = 0 = C 3 s i n 0 + C 4 c o s 0 = C 4 ⟹ C 4 = 0 y(1)=0=C_3sin0+C_4cos0=C_4 \implies C_4=0 y ( 1 ) = 0 = C 3 s in 0 + C 4 cos 0 = C 4 ⟹ C 4 = 0
y ( x ) = C 3 ( 1 ) s i n ( − λ x 2 l n ( 1 ) y(x)=C_3(1)sin(\sqrt{\frac{-\lambda x}{2}ln(1)} y ( x ) = C 3 ( 1 ) s in ( 2 − λ x l n ( 1 ) y ′ ( ϵ 2 π ) = 0 y'(\epsilon ^{2\pi})=0 y ′ ( ϵ 2 π ) = 0
y ′ ( ϵ 2 π ) = 0 = C 3 ( ϵ 2 π ) s i n ( − λ x 2 l n ( ϵ 2 π ) y'(\epsilon^{2\pi})=0=C_3(\epsilon^{2\pi})sin(\sqrt{\frac{-\lambda x}{2}ln(\epsilon^{2\pi})} y ′ ( ϵ 2 π ) = 0 = C 3 ( ϵ 2 π ) s in ( 2 − λ x l n ( ϵ 2 π )
n π = − λ x 2 l n ( ϵ 2 π ) ⟹ λ = ( 2 n π x ϵ 2 π ) 2 − − − > E i g e n v a l u e n \pi=\sqrt{\frac{-\lambda x}{2}ln(\epsilon^{2\pi})} \implies \lambda=(\frac{2n\pi}{x \epsilon^{2\pi}})^2--->Eigenvalue nπ = 2 − λ x l n ( ϵ 2 π ) ⟹ λ = ( x ϵ 2 π 2 nπ ) 2 − − − > E i g e n v a l u e
Simplifying to get the eigenfunction, we get
y ( x ) = C x sin x ( 2 n π 2 x ϵ 2 π ) 2 l n x ⟹ y ( x ) = C x sin n π x ϵ 2 π l n x − − − > E i g e n f u n c t i o n y(x)=Cx\sin \sqrt{x(\frac{2n\pi}{2x \epsilon^{2\pi}})^2}lnx \implies y(x)=Cx\sin \frac{n\pi}{x \epsilon^{2\pi}}\sqrt{lnx}--->Eigenfunction y ( x ) = C x sin x ( 2 x ϵ 2 π 2 nπ ) 2 l n x ⟹ y ( x ) = C x sin x ϵ 2 π nπ l n x − − − > E i g e n f u n c t i o n
Comments