Question #128950
Find the eigenvalues and associated eigenfunction of the strum-Liouville problem xy"+y'+lamda/2 y=0,y'(1)=0,y'(e^2π)=0
1
Expert's answer
2020-08-16T20:58:27-0400
SolutionSolution

xy+y+λ2y=0xy''+y'+ \frac{\lambda}{2 }y=0



y(1)=0,y(e2π)=0y'(1)=0,y'(e^2π)=0


We begin by making some assumptions which will simplify the problem. This will turn our differential equation into a constant-coefficient equation.

Let

t=lnxt=lnx

And

y(x)=ϕ(lnx)=ϕ(t)y(x)=\phi (ln x)=\phi(t)


y(x)=1x(dϕ(t)dt)y'(x)=\frac{1}{x}(\frac{d \phi (t)}{dt})


y(x)=1x2(d2ϕ(t)dt2dϕ(t)dt)y''(x)=\frac{1}{x^2}(\frac{d^2 \phi (t)}{dt^2}-\frac{d \phi (t)}{dt})


Next, we substitute our new y's to the original equation and simplify until we get a second order, constant coefficient equation.


x(1x2(d2ϕ(t)dt2dϕ(t)dt))+1x(dϕ(t)dt)+λ2ϕ(t)=0x(\frac{1}{x^2}(\frac{d^2 \phi (t)}{dt^2}-\frac{d \phi (t)}{dt}))+\frac{1}{x}(\frac{d \phi (t)}{dt})+\frac{\lambda}{2 }\phi(t)=0


(d2ϕ(t)xdt2dϕ(t)xdt)+(dϕ(t)xdt)+λ2ϕ(t)=0(\frac{d^2 \phi (t)}{xdt^2}-\frac{d \phi (t)}{xdt})+(\frac{d \phi (t)}{xdt})+\frac{\lambda}{2 }\phi(t)=0


d2ϕ(t)xdt2+λ2ϕ(t)=0\frac{d^2 \phi (t)}{xdt^2}+\frac{\lambda}{2 }\phi(t)=0

This is easy to solve with a characteristic equation.


0=r2+λ2x0=r^2+\frac{\lambda}{2}x

Solving for r we get

r2=λ2x    r=λ2x\sqrt{r^2}=\sqrt{-\frac{\lambda}{2}x} \implies r=\sqrt{-\frac{\lambda}{2}x}

We now write out the solution in exponential form.


ϕ(t)=C1ϵ(λx2)t+C2ϵ(λx2)t\phi(t)=C_1 \epsilon^{(\sqrt{\frac{-\lambda x}{2}})t}+C_2 \epsilon^{(\sqrt{\frac{-\lambda x}{2}})t}

Converting back to y(x)y(x) we get


y(x)=C1ϵ(λx2)lnx+C2ϵ(λx2)lnxy(x)=C_1 \epsilon^{(\sqrt{\frac{-\lambda x}{2}})ln x}+C_2 \epsilon^{(\sqrt{\frac{-\lambda x}{2}})ln x}

Applying Euler's identities and picking two linear independent solutions


y(x)=C3ϵ0sin(λx2)lnx+C4ϵ0cos(λx2)lnxy(x)=C_3 \epsilon^{0}sin(\sqrt{\frac{-\lambda x}{2}})ln x+C_4 \epsilon^{0} cos (\sqrt{\frac{-\lambda x}{2}})ln x

ϵ0=1\epsilon ^{0} = 1


y(x)=C3sin(λx2)lnx+C4cos(λx2)lnxy(x)=C_3 sin(\sqrt{\frac{-\lambda x}{2}})ln x+C_4 cos (\sqrt{\frac{-\lambda x}{2}})ln x

Substituting our boundary conditions.


y=0,y(1)=0,y(e2π)=0y=0,y'(1)=0,y'(e^2π)=0

Starting with y'(1) we get


y(1)=C3(1)sin(λx2ln(1)+C4(1)cos(λx2ln(1)y(1)=C_3(1)sin(\sqrt{\frac{-\lambda x}{2}ln(1)}+C_4(1)cos(\sqrt{\frac{-\lambda x}{2}ln(1)}

y(1)=0=C3sin0+C4cos0=C4    C4=0y(1)=0=C_3sin0+C_4cos0=C_4 \implies C_4=0


y(x)=C3(1)sin(λx2ln(1)y(x)=C_3(1)sin(\sqrt{\frac{-\lambda x}{2}ln(1)}

y(ϵ2π)=0y'(\epsilon ^{2\pi})=0


y(ϵ2π)=0=C3(ϵ2π)sin(λx2ln(ϵ2π)y'(\epsilon^{2\pi})=0=C_3(\epsilon^{2\pi})sin(\sqrt{\frac{-\lambda x}{2}ln(\epsilon^{2\pi})}


nπ=λx2ln(ϵ2π)    λ=(2nπxϵ2π)2>Eigenvaluen \pi=\sqrt{\frac{-\lambda x}{2}ln(\epsilon^{2\pi})} \implies \lambda=(\frac{2n\pi}{x \epsilon^{2\pi}})^2--->Eigenvalue


Simplifying to get the eigenfunction, we get


y(x)=Cxsinx(2nπ2xϵ2π)2lnx    y(x)=Cxsinnπxϵ2πlnx>Eigenfunctiony(x)=Cx\sin \sqrt{x(\frac{2n\pi}{2x \epsilon^{2\pi}})^2}lnx \implies y(x)=Cx\sin \frac{n\pi}{x \epsilon^{2\pi}}\sqrt{lnx}--->Eigenfunction




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS