Question #128946
Solve the boundary value problem:du/dt=βd^2u/dx^2,0<x<l,t>0
U(0,t)=0,u(l,t)=0,t>0
U(x,0)=f(x)0<x<l
1
Expert's answer
2020-08-12T18:02:33-0400

u=u(x,t)=a(x)b(t)0.a(x)b(t)=βa(x)b(t)b(t)βb(t)=a(x)a(x)=(πnl)2b(t)=eβ(πnl)2t,a(x)=c1sin(πnlx)+c2cos(πnlx)u(0,t)=u(l,t)=0c2=0un(x,t)=eβ(πnl)2tsin(πnlx).U(x,t)=n=0anun(x,t)=n=0aneβ(πnl)2tsin(πnlx).U(x,0)=f(x)=n=0ansin(πnlx)an=2l0lf(t)sin(πnlt)dtU(x,t)=n=0anun(x,t)=n=0eβ(πnl)2tsin(πnlx)2l0lf(t)sin(πnlt)dt.u = u(x,t)=a(x)b(t)\neq0.\\ a(x)b'(t)=\beta a''(x)b(t)\Rightarrow \\ \frac{b'(t)}{\beta b(t)}=\frac{a''(x)}{a(x)}=-(\frac{\pi n}{l})^2 \Rightarrow\\ b(t)=e^{-\beta \cdot (\frac{\pi n}{l})^2 \cdot t},\quad a(x)=c_1sin(\frac{\pi n}{l}x)+c_2cos(\frac{\pi n}{l}x)\\ u(0,t)=u(l,t)=0 \Rightarrow c_2=0 \Rightarrow u_n(x,t)=e^{-\beta \cdot (\frac{\pi n}{l})^2 \cdot t}\cdot sin(\frac{\pi n}{l}x).\\ U(x,t)=\sum\limits_{n=0}^\infty a_nu_n(x,t)=\sum\limits_{n=0}^\infty a_n\cdot e^{-\beta \cdot (\frac{\pi n}{l})^2 \cdot t}\cdot sin(\frac{\pi n}{l}x).\\ U(x,0)=f(x)=\sum\limits_{n=0}^\infty a_n\cdot sin(\frac{\pi n}{l}x) \Rightarrow a_n=\frac{2}{l}\int\limits_0^lf(t)sin(\frac{\pi n}{l}t)dt\Rightarrow\\ U(x,t)=\sum\limits_{n=0}^\infty a_nu_n(x,t)=\sum\limits_{n=0}^\infty e^{-\beta \cdot (\frac{\pi n}{l})^2 \cdot t}\cdot sin(\frac{\pi n}{l}x) \cdot \frac{2}{l}\int\limits_0^lf(t)sin(\frac{\pi n}{l}t)dt.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS