Question #128942
Solve the legendres equation (1-x^2)y"-2xy'+n(n-1)y=0
1
Expert's answer
2020-08-10T18:12:41-0400
SolutionSolution

Given (1x2)y2xy+n(n1)y=0>(1)(1-x^2)y''-2xy'+n(n-1)y=0------->(1)


Write the differential equation in standard form by dividing both sides of the equation by the coefficient of yy'' : (1x2)(1-x^2)



y2xy(1x2)+n(n1)(1x2)y=0y''-\frac{2xy'}{(1-x^2)}+\frac{n(n-1)}{(1-x^2)}y=0

Now 1x2=0    (1x)(1+x)=01-x^2=0 \implies (1-x)(1+x)=0

    x=+1\implies x=+1 or1or -1

Thus x=+1x=+1 and x=1x=-1 are two singular points of (1)(1)

Let

y(x)=Σk=0akxk+my(x)=\Sigma ^{\infin}_{k=0}a_kx^{k+m}

i.ei.e y=a0xm+a1xm+1+a2xm+2+a3xm+3+...+amxm+n>(2)y=a_0x^m+a_1x^{m+1}+a_2x^{m+2}+a_3x^{m+3}+...+a_mx^{m+n}----->(2)


y=ma0xm1+(m1)a1xm+(m+2)a2xm+1+(m+3)a3xm+2+...+(m+n)amxm+n1y'=ma_0x^{m-1}+(m-1)a_1x^{m}+(m+2)a_2x^{m+1}+(m+3)a_3x^{m+2}+...+(m+n)a_mx^{m+n-1}


y=m(m1)a0xm2+(m+1)ma1xm1+(m+2)(m1)a2xm+(m+3)(m+2)a3xm+1+...+(m+n)(m+n1)amxm+n2y''=m(m-1)a_0x^{m-2}+(m+1)ma_1x^{m-1}+(m+2)(m-1)a_2x^{m}+(m+3)(m+2)a_3x^{m+1}+...+(m+n)(m+n-1)a_mx^{m+n-2}


Put the values of y,y,yy,y',y'' in (1)(1) to get;


(1x2)[m(m1)a0xm2+(m+1)ma1xm1+(m+2)(m1)a2xm+(m+3)(m+2)a3xm+1+...]2x[ma0xm1+(m1)a1xm+(m+2)a2xm+1+(m+3)a3xm+2+...]+n(n1)[a0xm+a1xm+1+a2xm+2+a3xm+3+...+amxm+n]=0(1-x^2)[m(m-1)a_0x^{m-2}+(m+1)ma_1x^{m-1}+(m+2)(m-1)a_2x^{m}+(m+3)(m+2)a_3x^{m+1}+...]-2x[ma_0x^{m-1}+(m-1)a_1x^{m}+(m+2)a_2x^{m+1}+(m+3)a_3x^{m+2}+...]+n(n-1)[a_0x^m+a_1x^{m+1}+a_2x^{m+2}+a_3x^{m+3}+...+a_mx^{m+n}]=0


Multiply the terms and simplify to get the Indicial equation

For Indicial equation, the least power of xx terms are equated to zero


Here, xm2x^{m-2} is the least power of xx


Putting coefficients of xm2x^{m-2} equal to zero, we get;


    a0m(m1)=0\implies a_0m(m-1)=0

    m(m1)=0,a00\implies m(m-1)=0, a_0 \ne0

Thus m(m1)=0m(m-1)=0 is indicial equation>(3)------->(3)

Now we will find the coefficient a0,a1,a2,a3,a4....a_0, a_1, a_2, a_3, a_4.... and then find the general solution.


Equating the coefficient of xm1=0x^{m-1}=0



(m+1)ma1=0    a1=0m(m+1)>(4)(m+1)ma_1=0 \implies a_1=\frac{0}{m(m+1)}---->(4)


Equating the coefficient of xm=0x^m=0



a2(m+2)(m+1)a0(m1)m2a0m+n(n1)a0=0a_2(m+2)(m+1)-a_0(m-1)m-2a_0m+n(n-1)a_0=0


a2(m+2)(m+1)a0[(m1)m2m+n(n1)]=0>(5)a_2(m+2)(m+1)-a_0[(m-1)m-2m+n(n-1)]=0----->(5)


Equating the coefficient of xm+1=0x^{m+1}=0



a3(m+3)(m+1)a1[(m1)m+2mn(n1)]=0>(6)a_3(m+3)(m+1)-a_1[(m-1)m+2m-n(n-1)]=0----->(6)


Equating the coefficient of xm+2=0x^{m+2}=0


a4(m+4)(m+3)a2[(m+2)(m+1)+2(m+2)n(n1)]=0>(7)a_4(m+4)(m+3)-a_2[(m+2)(m+1)+2(m+2)-n(n-1)]=0----->(7)


To find the solution when m=0m=0


a2(0+2)(0+1)a0(0+1)02a00+n(n1)a0=0(From(5))a_2(0+2)(0+1)-a_0(0+1)*0-2a_0*0+n(n-1)a_0=0 (From (5))


2a2+n(n1)a0=02a_2+n(n-1)a_0=0

a2=n(n1)2!a0a_2=\frac{-n(n-1)}{2!}a_0

From (6)(6) Put m=0m=0


a3=(n2)(n+1)3!a1a_3=\frac{-(n-2)(n+1)}{3!}a_1

From (7)(7) Put m=0m=0



a4=(n3)(n1)(n+2)n4!a0a_4=\frac{(n-3)(n-1)(n+2)n}{4!}a_0

Similarly


a5=(n4)(n2)(n+1)(n+3)5!a1a_5=\frac{(n-4)(n-2)(n+1)(n+3)}{5!}a_1

Since given that a1=0a_1=0 Put values of a2,a3,a4,a5a_2, a_3, a_4, a_5 in (2)(2) to get


y=a0xm+0+[n(n1)2!a1]xm+2+0+[(n3)(n1)(n+2)n4!]a0xm+4+0y=a_0x^m+0+[\frac{-n(n-1)}{2!}a_1]x^{m+2}+0+[\frac{(n-3)(n-1)(n+2)n}{4!}]a_0x^{m+4}+0


y=a0[1+n(n1)2!x2+(n3)(n1)(n+2)n4!x4]xmy=a_0[1+\frac{n(n-1)}{2!}x^2+\frac{(n-3)(n-1)(n+2)n}{4!}x^4]x^{m}

Now Put m=1m=1


From (5)(5)


a2(3)(2)02a0+n(n1)a0=0a_2(3)(2)-0-2a_0+n(n-1)a_0=0


a2=(n(n1)26)a0=[n2n26]a0=[(n+1)(n2)6]a0a_2=(\frac{-n(n-1)-2}{6})a_0=-[\frac{n^2-n-2}{6}]a_0=-[\frac{(n+1)(n-2)}{6}]a_0

From (6)(6)

a3(4)(3)a1[2(1)+2(2)n(n1)]=0a_3(4)(3)-a_1[2(1)+2(2)-n(n-1)]=0

Put a1=1a_1=1


a3(4)(3)a1[6n(n1)]=0a_3(4)(3)-a_1[6-n(n-1)]=0

    a3=6n(n1)(4)(3)a1=[n2n6(4)(3)]a1=[(n3)(n+2)(4)(3)]a1\implies a_3=\frac{6-n(n-1)}{(4)(3)}a_1=-[\frac{n^2-n-6}{(4)(3)}]a_1=-[\frac{(n-3)(n+2)}{(4)(3)}]a_1

From (7)(7)

a4(5)(4)a2[(3)(2)+2(3)n(n1)]=0a_4(5)(4)-a_2[(3)(2)+2(3)-n(n-1)]=0

a4=a2(5)(4)[(n4)(n+3)]a_4=\frac{-a_2}{(5)(4)}[(n-4)(n+3)]

Putting value of a2a_2 we get


a4=(n+1)(n2)(3)(2)a0(n4)(n+3)=(n4)(n+3)(n2)(n+1)5!a0a_4=\frac{(n+1)(n-2)}{(3)(2)}a_0(n-4)(n+3)=\frac{(n-4)(n+3)(n-2)(n+1)}{5!}a_0

Putting the values from a0,a1,a2,a3a_0,a_1,a_2,a_3 in (3)(3) we get


y=a0xm+a1xm+1+(n2)(n+1)3!a0m+2(n3)(n+2)(4)(3)a1xm+3+(n4)(n+3)(n2)(n+1)5!a0xm+1y=a_0x^m+a_1x^{m+1}+\frac{-(n-2)(n+1)}{3!}a_0^{m+2}-\frac{(n-3)(n+2)}{(4)(3)}a_1x^{m+3}+\frac{(n-4)(n+3)(n-2)(n+1)}{5!}a_0x^{m+1}


Put m=1m=1 and a=1,a=1, we will get odd power terms as


y=[x+(n2)(n+1)3!x2+(n4)(n+3)(n2)(n+1)5!x5+...]a0>Answery=[x+\frac{-(n-2)(n+1)}{3!}x^2+\frac{(n-4)(n+3)(n-2)(n+1)}{5!}x^5+...]a_0----->Answer










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS