SolutionGiven (1−x2)y′′−2xy′+n(n−1)y=0−−−−−−−>(1)
Write the differential equation in standard form by dividing both sides of the equation by the coefficient of y′′ : (1−x2)
y′′−(1−x2)2xy′+(1−x2)n(n−1)y=0 Now 1−x2=0⟹(1−x)(1+x)=0
⟹x=+1 or−1
Thus x=+1 and x=−1 are two singular points of (1)
Let
y(x)=Σk=0∞akxk+m i.e y=a0xm+a1xm+1+a2xm+2+a3xm+3+...+amxm+n−−−−−>(2)
y′=ma0xm−1+(m−1)a1xm+(m+2)a2xm+1+(m+3)a3xm+2+...+(m+n)amxm+n−1
y′′=m(m−1)a0xm−2+(m+1)ma1xm−1+(m+2)(m−1)a2xm+(m+3)(m+2)a3xm+1+...+(m+n)(m+n−1)amxm+n−2
Put the values of y,y′,y′′ in (1) to get;
(1−x2)[m(m−1)a0xm−2+(m+1)ma1xm−1+(m+2)(m−1)a2xm+(m+3)(m+2)a3xm+1+...]−2x[ma0xm−1+(m−1)a1xm+(m+2)a2xm+1+(m+3)a3xm+2+...]+n(n−1)[a0xm+a1xm+1+a2xm+2+a3xm+3+...+amxm+n]=0
Multiply the terms and simplify to get the Indicial equation
For Indicial equation, the least power of x terms are equated to zero
Here, xm−2 is the least power of x
Putting coefficients of xm−2 equal to zero, we get;
⟹a0m(m−1)=0
⟹m(m−1)=0,a0=0 Thus m(m−1)=0 is indicial equation−−−−−−−>(3)
Now we will find the coefficient a0,a1,a2,a3,a4.... and then find the general solution.
Equating the coefficient of xm−1=0
(m+1)ma1=0⟹a1=m(m+1)0−−−−>(4)
Equating the coefficient of xm=0
a2(m+2)(m+1)−a0(m−1)m−2a0m+n(n−1)a0=0
a2(m+2)(m+1)−a0[(m−1)m−2m+n(n−1)]=0−−−−−>(5)
Equating the coefficient of xm+1=0
a3(m+3)(m+1)−a1[(m−1)m+2m−n(n−1)]=0−−−−−>(6)
Equating the coefficient of xm+2=0
a4(m+4)(m+3)−a2[(m+2)(m+1)+2(m+2)−n(n−1)]=0−−−−−>(7)
To find the solution when m=0
a2(0+2)(0+1)−a0(0+1)∗0−2a0∗0+n(n−1)a0=0(From(5))
2a2+n(n−1)a0=0
a2=2!−n(n−1)a0 From (6) Put m=0
a3=3!−(n−2)(n+1)a1 From (7) Put m=0
a4=4!(n−3)(n−1)(n+2)na0 Similarly
a5=5!(n−4)(n−2)(n+1)(n+3)a1 Since given that a1=0 Put values of a2,a3,a4,a5 in (2) to get
y=a0xm+0+[2!−n(n−1)a1]xm+2+0+[4!(n−3)(n−1)(n+2)n]a0xm+4+0
y=a0[1+2!n(n−1)x2+4!(n−3)(n−1)(n+2)nx4]xm
Now Put m=1
From (5)
a2(3)(2)−0−2a0+n(n−1)a0=0
a2=(6−n(n−1)−2)a0=−[6n2−n−2]a0=−[6(n+1)(n−2)]a0
From (6)
a3(4)(3)−a1[2(1)+2(2)−n(n−1)]=0 Put a1=1
a3(4)(3)−a1[6−n(n−1)]=0
⟹a3=(4)(3)6−n(n−1)a1=−[(4)(3)n2−n−6]a1=−[(4)(3)(n−3)(n+2)]a1 From (7)
a4(5)(4)−a2[(3)(2)+2(3)−n(n−1)]=0
a4=(5)(4)−a2[(n−4)(n+3)] Putting value of a2 we get
a4=(3)(2)(n+1)(n−2)a0(n−4)(n+3)=5!(n−4)(n+3)(n−2)(n+1)a0 Putting the values from a0,a1,a2,a3 in (3) we get
y=a0xm+a1xm+1+3!−(n−2)(n+1)a0m+2−(4)(3)(n−3)(n+2)a1xm+3+5!(n−4)(n+3)(n−2)(n+1)a0xm+1
Put m=1 and a=1, we will get odd power terms as
y=[x+3!−(n−2)(n+1)x2+5!(n−4)(n+3)(n−2)(n+1)x5+...]a0−−−−−>Answer
Comments