(y2+z2−x2)p−2xyq+2xz=0y2+z2−x2dx=−2xydy=−2xzdz−2xydy=−2xzdzydy=zdzlogy=logz+logC1C1=zyeach fraction=x(y2+z2−x2)−2xy2−2xz2xdx+ydy+zdz==−x(y2+z2+x2)xdx+ydy+zdz−x(y2+z2+x2)xdx+ydy+zdz=−2xydyy2+z2+x22xdx+2ydy+2zdz=ydylog(y2+z2+x2)=logy+logC2C2=yy2+z2+x2f(C1,C2)=0f(zy,yy2+z2+x2)=0
Comments
Dear Mirza, please use the panel for submitting new questions.
show that the Fourier series of f(x)=e^x (-π,π) Is 1/π sin hπ+∑_(n=1)^∞▒〖(2 sin hπ)/π(1+n^2 ) (-1)^n (cos nx-nsin nx)〗