Question #128666
Solve the Lagrange’s Linear Equation (y^2+z^2-x^2)p-2xyq+2xz=0
1
Expert's answer
2020-08-09T15:21:32-0400

(y2+z2x2)p2xyq+2xz=0dxy2+z2x2=dy2xy=dz2xzdy2xy=dz2xzdyy=dzzlogy=logz+logC1C1=yzeach fraction=xdx+ydy+zdzx(y2+z2x2)2xy22xz2==xdx+ydy+zdzx(y2+z2+x2)xdx+ydy+zdzx(y2+z2+x2)=dy2xy2xdx+2ydy+2zdzy2+z2+x2=dyylog(y2+z2+x2)=logy+logC2C2=y2+z2+x2yf(C1,C2)=0f(yz,y2+z2+x2y)=0(y^2+z^2-x^2)p-2xyq+2xz=0\\ \frac{dx}{y^2+z^2-x^2}=\frac{dy}{-2xy}=\frac{dz}{-2xz}\\ \frac{dy}{-2xy}=\frac{dz}{-2xz}\\ \frac{dy}{y}=\frac{dz}{z}\\ \log y=\log z+\log C_1\\ C_1=\frac{y}{z}\\ \text{each fraction}=\frac{xdx+ydy+zdz}{x(y^2+z^2-x^2)-2xy^2-2xz^2}=\\ =\frac{xdx+ydy+zdz}{-x(y^2+z^2+x^2)}\\ \frac{xdx+ydy+zdz}{-x(y^2+z^2+x^2)}=\frac{dy}{-2xy}\\ \frac{2xdx+2ydy+2zdz}{y^2+z^2+x^2}=\frac{dy}{y}\\ \log (y^2+z^2+x^2)=\log y+\log C_2\\ C_2=\frac{y^2+z^2+x^2}{y}\\ f(C_1, C_2)=0\\ f(\frac{y}{z}, \frac{y^2+z^2+x^2}{y})=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.10.20, 20:47

Dear Mirza, please use the panel for submitting new questions.

Mirza
15.10.20, 14:06

show that the Fourier series of f(x)=e^x (-π,π) Is 1/π sin hπ+∑_(n=1)^∞▒〖(2 sin hπ)/π(1+n^2 ) (-1)^n (cos nx-nsin nx)〗

LATEST TUTORIALS
APPROVED BY CLIENTS