u=X(x)∗T(t)βTT′=XX′=const=−λX′′+λX=0X(x)=C1cos(λx)+C2sin(λx)X(0)=C1∗1+C2∗0=C1=0=>X(x)=sin(λx)X(L)=sin(λL)=0λL=π∗k=>λ=(Lπ∗k)2X(x)=sin(λx),T(t)=C∗e−βλt,λ=(Lπ∗k)2=>We know that :u=X(x)∗T(t), sou(x,t)=k=0∑C∗e−βλt∗sin(λx),whereC=L20∫Lf(x)∗sin(λx)dx,is coefficient of a Fourier seriesλ=(Lπ∗k)2
Comments