Question #128879
Given that sinx is a solution of the differential equation: L[y]=d^4y/dx^4+2d^3y/dx^3+6d^2ydx^2+2dy/dx+5y=0 and the 4 parameter family of solutions of it. Hence solve L[y]=x^2
1
Expert's answer
2020-08-11T18:28:55-0400

SolutionSolution

To evaluate the particular solution l[y]=x2l[y]=x^2 .

It was given that sin(x)\sin(x) is a solution of


d4ydx4+2d3ydx3+6d2ydx2+2dydx+5y=0\frac{d^4y}{dx^4}+2\frac{d^3y}{dx^3}+6\frac{d^2y}{dx^2}+2\frac{dy}{dx}+5y=0

Next,


d4ydx4+2d3ydx3+6d2ydx2+2dydx+5y=x2\frac{d^4y}{dx^4}+2\frac{d^3y}{dx^3}+6\frac{d^2y}{dx^2}+2\frac{dy}{dx}+5y=x^2

For D.E d4ydx4+2d3ydx3+6d2ydx2+2dydx+5y=x2\frac{d^4y}{dx^4}+2\frac{d^3y}{dx^3}+6\frac{d^2y}{dx^2}+2\frac{dy}{dx}+5y=x^2 , you need to try the solution

yp1=Ax2+Bx+Cy_{p_1}=Ax^2+Bx+C (Since l[y]=x2l[y]=x^2 is of degree 2), Such that


d2ydx2=A,dydx=B\frac{d^2y}{dx^2}=A, \frac{dy}{dx}=B


d3ydx3=d4ydx4=0\frac{d^3y}{dx^3}=\frac{d^4y}{dx^4}=0

6A+2B+5(Ax2+Bx+c)=x26A+2B+5(Ax^2+Bx+c)=x^2

5Ax2+6A+5Bx+2B+5C=x25Ax^2+6A+5Bx+2B+5C=x^2


Equating the coefficients of like powers yields:



5A=1    A=155A=1 \implies A=\frac{1}{5}

5B=0    B=05B=0 \implies B=0

6A+2B+5C=0    6A+5C=0    5C=65    C=6256A+2B+5C=0 \implies 6A+5C=0 \implies 5C=-\frac{6}{5} \implies C=-\frac{6}{25}

Hence, evaluating yp1y_{p_1} yields


yp1=15x2625y_{p_1}=\frac{1}{5}x^2-\frac{6}{25}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS