Question #128661
Find the eigenvalues and associated eigenfunctions of the
Strum-Liouville problem: xy''+y'+(λ/x)y=0
y'(1)=0,y'(e^(2π))=0.
1
Expert's answer
2020-08-06T17:54:40-0400

case_1:λ=p2<0x2y+xyp2y=0y1=xp,y2=xpy=c1xp+c2xpandy(1)=y(e2π)=0c1=c2=0.case_2:λ=0x2y+xy=0y=c1ln(x)+c2andy(1)=y(e2π)=0c1=0.case_3:λ=p2>0x2y+xy+p2y=0y=c1sin(pln(x))+c2cos(pln(x))andy(1)=y(e2π)=0y=px(c1cos(pln(x))c2sin(pln(x)))c1=0,p=k2,kZ.λ=(k2)2,y=c2cos(k2ln(x));case \_1: \quad \lambda=-p^2<0\\ x^2y''+xy'-p^2y=0\Rightarrow y_1=x^p,y_2=x^{-p}\Rightarrow \\ y=c_1\cdot x^p+c_2\cdot x^{-p} \quad and \quad y'(1)=y'(e^{2\pi})=0\Rightarrow c_1=c_2=0.\\ case \_2: \quad \lambda=0\\ x^2y''+xy'=0 \Rightarrow y=c_1\cdot ln(x)+c_2 \quad and \quad y'(1)=y'(e^{2\pi})=0\Rightarrow c_1=0.\\ case \_3: \quad \lambda=p^2>0\\ x^2y''+xy'+p^2y=0\Rightarrow y=c_1sin(pln(x))+c_2cos(pln(x))\quad and \quad \\ y'(1)=y'(e^{2\pi})=0\Rightarrow\\ y'=\frac{p}{x}(c_1cos(pln(x))-c_2sin(pln(x)))\Rightarrow c_1=0,\quad p=\frac{k}{2},\quad k\in Z.\\ \lambda = (\frac{k}{2})^2,\quad y=c_2\cdot cos(\frac{k}{2}\cdot ln(x));


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS