Question #128508
Solve the Lagrange's equation (1-x^2)y"-2xy'+n(n+1)y=0
1
Expert's answer
2020-08-09T18:08:02-0400

Lety(x)=k=0akxkthen(1x2)y2xy+n(n+1)y=2(n(n+1)a0+a2)++2x(6a3+2a1(3n(n+1)1))++k=2((k(k3)+n(n+1))ak(k+1)(k+2)ak+2)xk=0a2=n(n+1)a0,a3=a1(13n(n+1)),ak+2=((k(k3)+n(n+1))(k+1)(k+2)ak.result:ygeneral=y(a0,a1,x)=k=0akxkanda2=n(n+1)a0,a3=a1(13n(n+1)),ak+2=((k(k3)+n(n+1))(k+1)(k+2)ak;Let \quad y(x)=\sum\limits_{k=0}^{\infty}a_kx^k \quad then \\ (1-x^2)y''-2xy'+n(n+1)y=2(n(n+1)a_0+a_2)+\\ +2x(6a_3+2a_1(3n(n+1)-1))+\\ +\sum\limits_{k=2}^{\infty}((k(k-3)+n(n+1))a_k-(k+1)(k+2)a_{k+2})x^k=0\Rightarrow\\ a_2=-n(n+1)a_0,\quad a_3=a_1(\frac{1}{3}-n(n+1)),\\ a_{k+2}=\frac{((k(k-3)+n(n+1))}{(k+1)(k+2)}a_k.\\ result:\quad y_{general}=y(a_0,a_1,x)=\sum\limits_{k=0}^{\infty}a_kx^k\quad and\\ a_2=-n(n+1)a_0,\quad a_3=a_1(\frac{1}{3}-n(n+1)),\\ a_{k+2}=\frac{((k(k-3)+n(n+1))}{(k+1)(k+2)}a_k;


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS