Lety(x)=k=0∑∞akxkthen(1−x2)y′′−2xy′+n(n+1)y=2(n(n+1)a0+a2)++2x(6a3+2a1(3n(n+1)−1))++k=2∑∞((k(k−3)+n(n+1))ak−(k+1)(k+2)ak+2)xk=0⇒a2=−n(n+1)a0,a3=a1(31−n(n+1)),ak+2=(k+1)(k+2)((k(k−3)+n(n+1))ak.result:ygeneral=y(a0,a1,x)=k=0∑∞akxkanda2=−n(n+1)a0,a3=a1(31−n(n+1)),ak+2=(k+1)(k+2)((k(k−3)+n(n+1))ak;
Comments