Question #128479
Find the Wronskian of a given set {y1, y2} of solutions of
(1 − x^2)y" − 2xy' + α(α + 1)y = 0 when W(0) = 1
1
Expert's answer
2020-08-06T14:03:43-0400

Solution.

(1-x2)y'' - 2xy' + α(α + 1)y = 0


Dividing both sides of the equation by (1-x2) we get differential equation in standard form:


y2x1x2y+α(α+1)1x2y=0y''-\frac{2x}{1-x^2}y'+\frac{\alpha \left(\alpha +1\right)}{1-x^2}y=0 ;


p(t) is the coefficient of y' and q(t) is the coefficient of y:

p(t)=2x1x2p\left(t\right)=-\frac{2x}{1-x^2}


q(t)=α(α+1)1x2q\left(t\right)=\frac{\alpha \left(\alpha +1\right)}{1-x^2}

To determine the Wronskian we apply Abel's theorem:

W(y1,y2)(x)=Ce(p(x)dx)W\left(y_1,y_2\right)\left(x\right)=C\cdot e^{\left(-\int p\left(x\right)dx\right)}


W(y1,y2)=Ce((2x1x2dx))W\left(y_1,y_2\right)=C\cdot e^{\left(-\int \left(-\frac{2x}{1-x^2}dx\right)\right)}


W(y1,y2)=Ce((d(1x2)1x2))W\left(y_1,y_2\right)=C\cdot e^{\left(-\int \left(\frac{d\left(1-x^2\right)}{1-x^2}\right)\right)}


W(y1,y2)=Celn1x2W\left(y_1,y_2\right)=C\cdot e^{-\ln \left|1-x^2\right|}


W(y1,y2)=C1x2W\left(y_1,y_2\right)=\frac{C}{\left|1-x^2\right|}


when W(0) = 1, we will get:

1=C101=\frac{C}{\left|1-0\right|}

C = 1, thus:


W(y1,y2)=11x2W\left(y_1,y_2\right)=\frac{1}{\left|1-x^2\right|}


Answer: W = 1 / |1 - x2|



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS