Solution.
(1-x2)y'' - 2xy' + α(α + 1)y = 0
Dividing both sides of the equation by (1-x2) we get differential equation in standard form:
y′′−1−x22xy′+1−x2α(α+1)y=0 ;
p(t) is the coefficient of y' and q(t) is the coefficient of y:
p(t)=−1−x22x
q(t)=1−x2α(α+1)
To determine the Wronskian we apply Abel's theorem:
W(y1,y2)(x)=C⋅e(−∫p(x)dx)
W(y1,y2)=C⋅e(−∫(−1−x22xdx))
W(y1,y2)=C⋅e(−∫(1−x2d(1−x2)))
W(y1,y2)=C⋅e−ln∣1−x2∣
W(y1,y2)=∣1−x2∣C
when W(0) = 1, we will get:
1=∣1−0∣C
C = 1, thus:
W(y1,y2)=∣1−x2∣1
Answer: W = 1 / |1 - x2|
Comments