Answer:
2y3ln∣1+y2∣+ln∣x2A∣−3y=0
Solution
(2+2y2)dx+3xy2dy=0
Separating terms gives:
3xy2dy=−2(1+y2)dx
dividing both sides by x(1+y2) gives:
x(1+y2)3xy2dy=x(1+y2)−2(1+y2)dx
=>1+y23y2dy=x−2dx
Reducing 1+y2y2 will give:
1+y2y2=1−1+y21
=>3(1−1+y21)dy=x−2dx
Integrating both sides gives:
∫3(1−1+y21)dy=∫x−2dx
=>3∫(1−1+y21)dy=−2∫x1dx
=>3(y−2y1ln∣1+y2∣=−2ln∣x∣+ln(A)
=>3y−2y3ln∣1+y2∣=ln∣x−2∣+ln(A)
=>3y=2y3ln∣1+y2∣+ln∣x2A∣
2y3ln∣1+y2∣+ln∣x2A∣−3y=0
Comments