Question #128437

(2+2y^2)dx+3xy^2dy=0


1
Expert's answer
2020-08-06T14:19:12-0400

Answer:

32yln1+y2+lnAx23y=0\dfrac {3}{2y}ln|1+y^2| + ln|\dfrac {A}{x^2}| - 3y = 0


Solution

(2+2y2)dx+3xy2dy=0(2+2y^2)dx + 3xy^2dy = 0

Separating terms gives:

3xy2dy=2(1+y2)dx3xy^2dy = -2(1+y^2)dx

dividing both sides by x(1+y2)x(1+y^2) gives:

3xy2x(1+y2)dy=2(1+y2)x(1+y2)dx\dfrac {3xy^2}{x(1+y^2)}dy = \dfrac {-2(1+y^2)}{x(1+y^2)}dx


=>3y21+y2dy=2xdx=> \dfrac {3y^2}{1+y^2}dy = \dfrac {-2}{x}dx


Reducing y21+y2\dfrac {y^2}{1+y^2} will give:

y21+y2=111+y2\dfrac {y^2}{1+y^2} = 1 - \dfrac{1}{1+y^2}


=>3(111+y2)dy=2xdx=> 3(1-\dfrac {1}{1+y^2})dy = \dfrac{-2}{x}dx

Integrating both sides gives:

3(111+y2)dy=2xdx\intop3(1-\dfrac {1}{1+y^2})dy = \intop\dfrac{-2}{x}dx

=>3(111+y2)dy=21xdx=> 3\intop(1-\dfrac {1}{1+y^2})dy = -2\intop\dfrac{1}{x}dx

=>3(y12yln1+y2=2lnx+ln(A)=> 3(y-\dfrac{1}{2y}ln|1+y^2|=-2ln|x|+ln(A)

=>3y32yln1+y2=lnx2+ln(A)=> 3y - \dfrac{3}{2y}ln|1+y^2| = ln|x^{-2}| + ln(A)

=>3y=32yln1+y2+lnAx2=> 3y = \dfrac {3}{2y}ln|1+y^2| + ln|\dfrac {A}{x^2}|


32yln1+y2+lnAx23y=0\dfrac {3}{2y}ln|1+y^2| + ln|\dfrac {A}{x^2}| - 3y = 0





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS