Question #128305
Verify that u=2x+a−−−−−√+2y+b−−−−−√ is a solution of the equation ∂x∂u+∂y∂u=u.
1
Expert's answer
2020-08-04T19:24:16-0400

∂x∂u+∂y∂u=u.

Divide throughout by ∂x∂y, we get


uy+ux=uxy\frac{\partial u}{\partial \:y}+\frac{\partial u}{\partial \:x}= \frac{\partial{u}}{\partial \:x\partial \:y}


Given u= (2x+a)2y+b\left(2x+a\right)-\sqrt{2y+b}

Left side:


x((2x+a)2y+b)+y((2x+a)2y+b)\frac{\partial }{\partial \:x}\left(\left(2x+a\right)-\sqrt{2y+b}\right)+\frac{\partial }{\partial \:y}\left(\left(2x+a\right)-\sqrt{2y+b}\right)


x((2x+a)2y+b)=2\frac{\partial }{\partial \:x}\left(\left(2x+a\right)-\sqrt{2y+b}\right)= 2


y((2x+a)2y+b)=12y+b\frac{\partial }{\partial \:y}\left(\left(2x+a\right)-\sqrt{2y+b}\right)= \frac{1}{-\sqrt{2y+b}}


Hence left side is 212y+b2-\frac{1}{\sqrt{2y+b}}


Right side:


xy((2x+a)2y+b)\frac{\partial }{\partial \:x\partial \:y}\left(\left(2x+a\right)-\sqrt{2y+b}\right) = y(2)\frac{\partial }{\partial \:y}(2) =0


Hence both sides are not equal and hence u is not the solution for given equation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS