∂x∂u+∂y∂u=u.
Divide throughout by ∂x∂y, we get
∂ u ∂ y + ∂ u ∂ x = ∂ u ∂ x ∂ y \frac{\partial u}{\partial \:y}+\frac{\partial u}{\partial \:x}= \frac{\partial{u}}{\partial \:x\partial \:y} ∂ y ∂ u + ∂ x ∂ u = ∂ x ∂ y ∂ u
Given u= ( 2 x + a ) − 2 y + b \left(2x+a\right)-\sqrt{2y+b} ( 2 x + a ) − 2 y + b
Left side:
∂ ∂ x ( ( 2 x + a ) − 2 y + b ) + ∂ ∂ y ( ( 2 x + a ) − 2 y + b ) \frac{\partial }{\partial \:x}\left(\left(2x+a\right)-\sqrt{2y+b}\right)+\frac{\partial }{\partial \:y}\left(\left(2x+a\right)-\sqrt{2y+b}\right) ∂ x ∂ ( ( 2 x + a ) − 2 y + b ) + ∂ y ∂ ( ( 2 x + a ) − 2 y + b )
∂ ∂ x ( ( 2 x + a ) − 2 y + b ) = 2 \frac{\partial }{\partial \:x}\left(\left(2x+a\right)-\sqrt{2y+b}\right)= 2 ∂ x ∂ ( ( 2 x + a ) − 2 y + b ) = 2
∂ ∂ y ( ( 2 x + a ) − 2 y + b ) = 1 − 2 y + b \frac{\partial }{\partial \:y}\left(\left(2x+a\right)-\sqrt{2y+b}\right)= \frac{1}{-\sqrt{2y+b}} ∂ y ∂ ( ( 2 x + a ) − 2 y + b ) = − 2 y + b 1
Hence left side is 2 − 1 2 y + b 2-\frac{1}{\sqrt{2y+b}} 2 − 2 y + b 1
Right side:
∂ ∂ x ∂ y ( ( 2 x + a ) − 2 y + b ) \frac{\partial }{\partial \:x\partial \:y}\left(\left(2x+a\right)-\sqrt{2y+b}\right) ∂ x ∂ y ∂ ( ( 2 x + a ) − 2 y + b ) = ∂ ∂ y ( 2 ) \frac{\partial }{\partial \:y}(2) ∂ y ∂ ( 2 ) =0
Hence both sides are not equal and hence u is not the solution for given equation.
Comments