Question #128216
Find the General solution of the given system dx/dt=x+2y and dy/dt=4x+3
1
Expert's answer
2020-08-03T18:48:46-0400

We have the following system: {dxdt=x+2ydydt=4x+3y\begin{cases} \frac{dx}{dt}=x+2y \\ \frac{dy}{dt}=4x+3y \end{cases} , or in the matrix form: X=AX,X^{\prime}=AX, where X=[xy], A=[1243]X=\begin{bmatrix} x \\ y \end{bmatrix}, \ A=\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} .

The characteristic equation: det(AλI)=1λ243λ=(1λ)(3λ)4×2=λ24λ5=0.\det (A-\lambda I)=\begin{vmatrix} 1-\lambda & 2 \\ 4 & 3-\lambda \end{vmatrix}=(1-\lambda )(3-\lambda )-4\times 2=\lambda ^2-4\lambda -5=0.

Eigenvalues: λ1=1, λ2=5.\lambda _1=-1,\ \lambda _2=5.


Let v1v_1 be eigen vector, associated with the eigenvalue λ1\lambda_1 :

[1λ1243λ1]v1=[2244]v1=[2v11+2v124v11+4v12]=0,\begin{bmatrix} 1 -\lambda_1& 2 \\ 4 & 3-\lambda_1 \end{bmatrix} v_1=\begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix}v_1= \begin{bmatrix} 2v_{11} +2 v_{12}\\ 4 v_{11}+4v_{12} \end{bmatrix}=0, then v1=[11]v_1= \begin{bmatrix} 1 \\ -1 \end{bmatrix} .


Let v2v_2 be eigen vector, associated with the eigenvalue λ2\lambda_2 :

[1λ2243λ2]v2=[4242]v2=[4v21+2v224v212v22]=0,\begin{bmatrix} 1 -\lambda_2& 2 \\ 4 & 3-\lambda_2 \end{bmatrix} v_2=\begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix}v_2= \begin{bmatrix} -4v_{21} +2 v_{22}\\ 4 v_{21}-2v_{22} \end{bmatrix}=0, then v2=[12]v_2= \begin{bmatrix} 1 \\ 2 \end{bmatrix} .


Then solution has form X=c1eλ1tv1+c2eλ2tv2=[c1et+c2e5tc1et+2c2e5t]X=c_1e^{\lambda_1 t} v_1+ c_2e^{\lambda_2 t} v_2 = \begin{bmatrix} c_1 e^{-t} +c_2 e^{5t}\\ -c_1e^{-t}+2c_2e^{5t} \end{bmatrix} .

Answer: {x=c1et+c2e5ty=c1et+2c2e5t\begin{cases} x=c_1 e^{-t} +c_2 e^{5t}\\ y=-c_1e^{-t}+2c_2e^{5t} \end{cases} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS