We have the following system: "\\begin{cases} \n\\frac{dx}{dt}=x+2y\n\\\\\n\\frac{dy}{dt}=4x+3y\n\\end{cases}" , or in the matrix form: "X^{\\prime}=AX," where "X=\\begin{bmatrix} x\n\\\\ y\n\\end{bmatrix}, \\ A=\\begin{bmatrix} 1 & 2 \\\\ 4 & 3\n\\end{bmatrix}" .
The characteristic equation: "\\det (A-\\lambda I)=\\begin{vmatrix} 1-\\lambda & 2 \\\\ 4 & 3-\\lambda \n\\end{vmatrix}=(1-\\lambda )(3-\\lambda )-4\\times 2=\\lambda ^2-4\\lambda -5=0."
Eigenvalues: "\\lambda _1=-1,\\ \\lambda _2=5."
Let "v_1" be eigen vector, associated with the eigenvalue "\\lambda_1" :
"\\begin{bmatrix} 1 -\\lambda_1& 2 \\\\ 4 & 3-\\lambda_1\n\\end{bmatrix} v_1=\\begin{bmatrix} 2 & 2 \\\\ 4 & 4\n\\end{bmatrix}v_1= \\begin{bmatrix} 2v_{11} +2 v_{12}\\\\ 4 v_{11}+4v_{12}\n\\end{bmatrix}=0," then "v_1= \\begin{bmatrix} 1 \\\\ -1\n\\end{bmatrix}" .
Let "v_2" be eigen vector, associated with the eigenvalue "\\lambda_2" :
"\\begin{bmatrix} 1 -\\lambda_2& 2 \\\\ 4 & 3-\\lambda_2\n\\end{bmatrix} v_2=\\begin{bmatrix} -4 & 2 \\\\ 4 & -2\n\\end{bmatrix}v_2= \\begin{bmatrix} -4v_{21} +2 v_{22}\\\\ 4 v_{21}-2v_{22}\n\\end{bmatrix}=0," then "v_2= \\begin{bmatrix} 1 \\\\ 2\n\\end{bmatrix}" .
Then solution has form "X=c_1e^{\\lambda_1 t} v_1+ c_2e^{\\lambda_2 t} v_2 = \\begin{bmatrix} c_1 e^{-t} +c_2 e^{5t}\\\\ -c_1e^{-t}+2c_2e^{5t}\n\\end{bmatrix}" .
Answer: "\\begin{cases} x=c_1 e^{-t} +c_2 e^{5t}\\\\ y=-c_1e^{-t}+2c_2e^{5t}\n\\end{cases}" .
Comments
Leave a comment