We have the following system: {dtdx=x+2ydtdy=4x+3y , or in the matrix form: X′=AX, where X=[xy], A=[1423] .
The characteristic equation: det(A−λI)=∣∣1−λ423−λ∣∣=(1−λ)(3−λ)−4×2=λ2−4λ−5=0.
Eigenvalues: λ1=−1, λ2=5.
Let v1 be eigen vector, associated with the eigenvalue λ1 :
[1−λ1423−λ1]v1=[2424]v1=[2v11+2v124v11+4v12]=0, then v1=[1−1] .
Let v2 be eigen vector, associated with the eigenvalue λ2 :
[1−λ2423−λ2]v2=[−442−2]v2=[−4v21+2v224v21−2v22]=0, then v2=[12] .
Then solution has form X=c1eλ1tv1+c2eλ2tv2=[c1e−t+c2e5t−c1e−t+2c2e5t] .
Answer: {x=c1e−t+c2e5ty=−c1e−t+2c2e5t .
Comments