λ4+2⋅λ2+1=0(λ2+1)2=(λ+i)2⋅(λ−i)2=0λ1=λ2=−i,λ3=λ4=iyh=(c1+c2x)sin(x)+(c3+c4x)cos(x)y0=(14x2−916)cos(x)+(13x3−12x)sin(x).y(x)=yh+y0=(c1+c2x)sin(x)+(c3+c4x)cos(x)+(14x2−916)cos(x)+(13x3−12x)sin(x);\lambda^4+2\cdot \lambda^2+1=0\\ (\lambda^2+1)^2=(\lambda+i)^2\cdot (\lambda-i)^2=0\\ \lambda_1=\lambda_2=-i, \lambda_3=\lambda_4=i\\ y_{h}=(c_1+c_2x)sin(x)+(c_3+c_4x)cos(x)\\ y_0=(\frac{1}{4}x^2-\frac{9}{16})cos(x)+(\frac{1}{3}x^3-\frac{1}{2}x)sin(x).\\ y(x)=y_{h}+y_{0}=(c_1+c_2x)sin(x)+(c_3+c_4x)cos(x)+ (\frac{1}{4}x^2-\frac{9}{16})cos(x)+(\frac{1}{3}x^3-\frac{1}{2}x)sin(x);λ4+2⋅λ2+1=0(λ2+1)2=(λ+i)2⋅(λ−i)2=0λ1=λ2=−i,λ3=λ4=iyh=(c1+c2x)sin(x)+(c3+c4x)cos(x)y0=(41x2−169)cos(x)+(31x3−21x)sin(x).y(x)=yh+y0=(c1+c2x)sin(x)+(c3+c4x)cos(x)+(41x2−169)cos(x)+(31x3−21x)sin(x);
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments