"\\lambda^4+2\\cdot \\lambda^2+1=0\\\\\n(\\lambda^2+1)^2=(\\lambda+i)^2\\cdot (\\lambda-i)^2=0\\\\\n\\lambda_1=\\lambda_2=-i, \\lambda_3=\\lambda_4=i\\\\\ny_{h}=(c_1+c_2x)sin(x)+(c_3+c_4x)cos(x)\\\\\ny_0=(\\frac{1}{4}x^2-\\frac{9}{16})cos(x)+(\\frac{1}{3}x^3-\\frac{1}{2}x)sin(x).\\\\\ny(x)=y_{h}+y_{0}=(c_1+c_2x)sin(x)+(c_3+c_4x)cos(x)+\n(\\frac{1}{4}x^2-\\frac{9}{16})cos(x)+(\\frac{1}{3}x^3-\\frac{1}{2}x)sin(x);"
Comments
Leave a comment