−x∗dx+y∗dy−x∗(xz−y)+y∗(yz−x)=dz1−z212d(−x2+y2)−x2∗z+y2∗z=dz1−z212d(−x2+y2)−x2+y2=z∗dz1−z212ln(−x2+y2)=−12ln(1−z2)C1y2−x2=C11−z2\dfrac{-x*dx+y*dy}{-x*(xz-y)+y*(yz-x)}=\dfrac{dz}{1-z^2}\newline \dfrac{\dfrac{1}{2}d(-x^2+y^2)}{-x^2*z+y^2*z}=\dfrac{dz}{1-z^2}\newline \dfrac{1}{2}\dfrac{d(-x^2+y^2)}{-x^2+y^2}=\dfrac{z*dz}{1-z^2}\newline \dfrac{1}{2}\ln(-x^2+y^2)=-\dfrac{1}{2}\ln \dfrac{(1-z^2)}{C_1}\newline y^2-x^2=\dfrac{C_1}{1-z^2}−x∗(xz−y)+y∗(yz−x)−x∗dx+y∗dy=1−z2dz−x2∗z+y2∗z21d(−x2+y2)=1−z2dz21−x2+y2d(−x2+y2)=1−z2z∗dz21ln(−x2+y2)=−21lnC1(1−z2)y2−x2=1−z2C1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments