L{f(t)}=∫071⋅e−stdt+∫7∞0⋅e−stdt=−1s⋅(e−st|07)=−1s(e−7t−e0)=1−e−7tsL \{ f(t) \} = \int\limits_{0}^{7} 1 \cdot e^{-st} dt + \int\limits_{7}^{\infty} 0 \cdot e^{-st} dt = -\cfrac{1}{s} \cdot \Big( e^{-st} \text{\textbar}_{0}^{7} \Big) = -\cfrac{1}{s} \Big( e^{-7t} - e^{0} \Big) = \cfrac{1 - e^{-7t}}{s}L{f(t)}=0∫71⋅e−stdt+7∫∞0⋅e−stdt=−s1⋅(e−st|07)=−s1(e−7t−e0)=s1−e−7t
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments