Question #127153
Use the Laplace transform to solve the given initial value problem.

y^(4)−256y=0; y(0)=43, y′(0)=104, y′′(0)=432, y′′′ (0)=1,024


Enclose arguments of functions in parentheses. For example, sin(2x).

y(t)= _______________
1
Expert's answer
2020-07-29T15:01:06-0400

y(t)Y(p)y(t)\to Y(p)

y(4)(t)p4Y(p)p3y(0)p2y(0)py(0)y(3)(0)y^{(4)}(t)\to p^4Y(p)-p^3y(0)-p^2y'(0)-py''(0)-y^{(3)}(0)

For our case:

y(4)(t)p4Y(p)43p3104p2432p1024y^{(4)}(t)\to p^4Y(p)-43p^3-104p^2-432p-1024

Then:

p4Y(p)43p3104p2432p1024256Y(p)=0p^4Y(p)-43p^3-104p^2-432p-1024-256Y(p)=0

(p4256)Y(p)=43p3+104p2+432p+1024(p^4-256)Y(p)=43p^3+104p^2+432p+1024

Y(p)=43p3+104p2+432p+1024(p2+16)(p+4)(p4)Y(p)=\frac{43p^3+104p^2+432p+1024}{(p^2+16)(p+4)(p-4)}

Ap+4+Bp4+Cp+Dp2+16=43p3+104p2+432p+1024(p2+16)(p+4)(p4)\frac{A}{p+4}+\frac{B}{p-4}+\frac{Cp+D}{p^2+16}=\frac{43p^3+104p^2+432p+1024}{(p^2+16)(p+4)(p-4)}

A(p4)(p2+16)+B(p+4)(p2+16)+(Cp+D)(p+4)(p4)=A(p-4)(p^2+16)+B(p+4)(p^2+16)+(Cp+D)(p+4)(p-4)=

=43p3+104p2+432p+1024=43p^3+104p^2+432p+1024

A(p34p2+16p64)+B(p3+4p2+16p+64)+Cp(p216)+D(p216)=A(p^3-4p^2+16p-64)+B(p^3+4p^2+16p+64)+Cp(p^2-16)+D(p^2-16)=

=43p3+104p2+432p+1024=43p^3+104p^2+432p+1024


A+B+C=43A+B+C=43

4A+4B+D=104-4A+4B+D=104

16A+16B16C=432    A+BC=2716A+16B-16C=432\implies A+B-C=27

64A+64B16D=1024    4A+4BD=64-64A+64B-16D=1024\implies -4A+4B-D=64


2C=16    C=82C=16\implies C=8

2D=40    D=202D=40\implies D=20


A+B=35A+B=35

4A+4B=84    BA=21-4A+4B=84\implies B-A=21

B=28,A=7B=28,A=7


Then:

Y(p)=71p+4+281p4+8p+20p2+16Y(p)=7\cdot\frac{1}{p+4}+28\cdot\frac{1}{p-4}+\frac{8p+20}{p^2+16}

1p+4e4t\frac{1}{p+4}\to e^{-4t}

1p4e4t\frac{1}{p-4}\to e^{4t}

pp2+16cos4t\frac{p}{p^2+16}\to cos4t

1p2+1614sin4t\frac{1}{p^2+16}\to \frac{1}{4}sin4t


Answer:

y(t)=7e4t+28e4t+8cos4t+5sin4ty(t)=7e^{-4t}+28e^{4t}+8cos4t+5sin4t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
11.05.21, 21:11

Dear enaira, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

enaira
11.05.21, 16:47

Thank you! The answer is correct. though the solution is a bit too long.

LATEST TUTORIALS
APPROVED BY CLIENTS