y(t)→Y(p)
y(4)(t)→p4Y(p)−p3y(0)−p2y′(0)−py′′(0)−y(3)(0)
For our case:
y(4)(t)→p4Y(p)−43p3−104p2−432p−1024
Then:
p4Y(p)−43p3−104p2−432p−1024−256Y(p)=0
(p4−256)Y(p)=43p3+104p2+432p+1024
Y(p)=(p2+16)(p+4)(p−4)43p3+104p2+432p+1024
p+4A+p−4B+p2+16Cp+D=(p2+16)(p+4)(p−4)43p3+104p2+432p+1024
A(p−4)(p2+16)+B(p+4)(p2+16)+(Cp+D)(p+4)(p−4)=
=43p3+104p2+432p+1024
A(p3−4p2+16p−64)+B(p3+4p2+16p+64)+Cp(p2−16)+D(p2−16)=
=43p3+104p2+432p+1024
A+B+C=43
−4A+4B+D=104
16A+16B−16C=432⟹A+B−C=27
−64A+64B−16D=1024⟹−4A+4B−D=64
2C=16⟹C=8
2D=40⟹D=20
A+B=35
−4A+4B=84⟹B−A=21
B=28,A=7
Then:
Y(p)=7⋅p+41+28⋅p−41+p2+168p+20
p+41→e−4t
p−41→e4t
p2+16p→cos4t
p2+161→41sin4t
Answer:
y(t)=7e−4t+28e4t+8cos4t+5sin4t
Comments
Dear enaira, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you! The answer is correct. though the solution is a bit too long.