Given, (2xz−yz)dx+(2yz−xz)dy−(x2−xy+y2)dz=0 .
Compare the given equation with Pdx+Qdy+Rdz=0, we have
P=2xz−yz,Q=2yz−xz,R=−x2+xy−y2.
Given total differential equation is integrable if
P(∂z∂Q−∂y∂R)+Q(∂x∂R−∂z∂P)+R(∂y∂P−∂x∂Q)=0 .
For our problem:
∂z∂Q=2y−x,∂y∂R=x−2y,∂x∂R=−2x+y,∂z∂P=2x−y∂y∂P=−z=∂x∂Q ,
Hence,
P(∂z∂Q−∂y∂R)+Q(∂x∂R−∂z∂P)+R(∂y∂P−∂x∂Q)=(2xz−yz)(4y−2x)+(2yz−xz)(−4x+2y)=8xyz−4y2z−4x2z+2xyz−8xyz+4y2z+4x2z−2xyz=0 holds.
Hence, given differential equation is integrable.
Now, (2xz−yz)dx+(2yz−xz)dy−(x2−xy+y2)dz=0
x2+y2−xy2xdx+2ydy−(ydx+xdy)=zdz
Now, by integrating we get
log(x2+y2−xy)=log(z)+log(c)⟹x2+y2−xy=cz is the required solution.
Comments
Dear Ram, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thanks