the auxiliary equation f the given differential equation is:
D2-3D+2=0
D=2,1
y(x)= c1e2x+c2ex
particular solution by method of variation of parameters:
let u(x)=e2x
v=ex
f= "\\frac{e^{2x}}{1+e^{2x}}"
then, wronskian W(u,v)="\\begin{vmatrix}\n e^{2x} & e^{x} \\\\\n 2e^{2x} & e^{x}\n\\end{vmatrix}" = -e3x
then, the particular solution is:
"=-u\\int{\\frac{v.fdx}{W}}+v\\int{\\frac{u.fdx}{W}}"
"= -e^{2x}\\int{\\frac{e^x . e^{2x}dx}{-e^{3x}(1+e^{2x})}}+ e^{x}\\int{\\frac{e^{2x} . e^{2x}dx}{-e^{3x}(1+e^{2x})}}"
"=e^{2x} \\int{\\frac{1}{1+e^{2x}}}dx - e^x\\int{\\frac{e^x}{1+e^{2x}}}dx"
"= e^{2x}.ln|sin(tan^{-1}.e^x)|-e^x tan^{-1}e^x"
so the solution is:
"y=c_1e^{2x}+c_2e^x+e^{2x}.ln|sin(tan^{-1}.e^x)|-e^x tan^{-1}e^x"
Comments
Leave a comment