the auxiliary equation f the given differential equation is:
D2-3D+2=0
D=2,1
y(x)= c1e2x+c2ex
particular solution by method of variation of parameters:
let u(x)=e2x
v=ex
f= 1+e2xe2x
then, wronskian W(u,v)=∣∣e2x2e2xexex∣∣ = -e3x
then, the particular solution is:
=−u∫Wv.fdx+v∫Wu.fdx
=−e2x∫−e3x(1+e2x)ex.e2xdx+ex∫−e3x(1+e2x)e2x.e2xdx
=e2x∫1+e2x1dx−ex∫1+e2xexdx
=e2x.ln∣sin(tan−1.ex)∣−extan−1ex
so the solution is:
y=c1e2x+c2ex+e2x.ln∣sin(tan−1.ex)∣−extan−1ex
Comments