Question #118798
Find the integral curves of the equations
dx/(y+zx) = dy/-(x+yz) = dz/(x^2 - y^2)
1
Expert's answer
2020-06-01T17:52:39-0400

dxy+zx=dy(x+yz)=dzx2y2\frac {dx}{y+zx} = \frac {dy}{-(x+yz)} = \frac {dz}{x^2 - y^2}


xdx+ydyx(y+zx)y(x+zy)=dzx2y2\frac {xdx+ydy}{x(y+zx)-y(x+zy)}= \frac {dz}{x^2 - y^2}

xdx+ydyz(x2y2)=dzx2y2\frac {xdx+ydy}{z(x^2-y^2)}= \frac {dz}{x^2 - y^2}

xdx+ydy=zdzxdx+ydy=zdz

x2+y2=z2+C1x^2+y^2=z^2+C_1


xdx+ydy+zdz(z+1)(x2y2)=dzx2y2\frac {xdx+ydy+zdz}{(z+1)(x^2-y^2)}= \frac {dz}{x^2 - y^2}

xdx+ydy+zdz=(z+1)dzxdx+ydy+zdz=(z+1)dz

x2+y2+z2=z2+2z+C2x^2+y^2+z^2=z^2+2z+C_2

x2+y2=2z+C2x^2+y^2=2z+C_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS