dxy+zx=dy−(x+yz)=dzx2−y2\frac {dx}{y+zx} = \frac {dy}{-(x+yz)} = \frac {dz}{x^2 - y^2}y+zxdx=−(x+yz)dy=x2−y2dz
xdx+ydyx(y+zx)−y(x+zy)=dzx2−y2\frac {xdx+ydy}{x(y+zx)-y(x+zy)}= \frac {dz}{x^2 - y^2}x(y+zx)−y(x+zy)xdx+ydy=x2−y2dz
xdx+ydyz(x2−y2)=dzx2−y2\frac {xdx+ydy}{z(x^2-y^2)}= \frac {dz}{x^2 - y^2}z(x2−y2)xdx+ydy=x2−y2dz
xdx+ydy=zdzxdx+ydy=zdzxdx+ydy=zdz
x2+y2=z2+C1x^2+y^2=z^2+C_1x2+y2=z2+C1
xdx+ydy+zdz(z+1)(x2−y2)=dzx2−y2\frac {xdx+ydy+zdz}{(z+1)(x^2-y^2)}= \frac {dz}{x^2 - y^2}(z+1)(x2−y2)xdx+ydy+zdz=x2−y2dz
xdx+ydy+zdz=(z+1)dzxdx+ydy+zdz=(z+1)dzxdx+ydy+zdz=(z+1)dz
x2+y2+z2=z2+2z+C2x^2+y^2+z^2=z^2+2z+C_2x2+y2+z2=z2+2z+C2
x2+y2=2z+C2x^2+y^2=2z+C_2x2+y2=2z+C2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments