Question #117715

Solve the initial value problem 2f(t)3f(t)+f(t)=tet,f(0)=1,f(0)=322f''(t)-3f'(t)+f(t)=te^t, f(0)=1,f'(0)=\frac{3}{2}


Using the point transformation [y = exp(ψ)], transform the equation (Eହ


) into a first

order non-linear O.D.E with independent variable x and dependent variable w, whereby w ≔ ψ

.


Afterwards, use the second point transformation ቂw =

ିଶఉᇲ(௫)

ቃ to change this first order O.D.E to a

second order, linear and homogeneous O.D.E with independent variable x and dependent variable β .


1
Expert's answer
2020-05-25T20:50:17-0400

The solution consists of two parts:



f(t)=fhom(t)+fpar(t)fhom(t)solution of a homogeneous equation2f(t)3f(t)+f(t)=0fpar(t)particular solution of an inhomogeneous equation2f(t)3f(t)+f(t)=tetf(t)=f_{hom}(t)+f_{par}(t)\\[0.3cm] f_{hom}(t)-\text{solution of a homogeneous equation}\\[0.3cm] 2f''(t)-3f'(t)+f(t)=0\\ f_{par}(t)-\text{particular solution of an inhomogeneous equation}\\[0.3cm] 2f''(t)-3f'(t)+f(t)=t\cdot e^t

1 STEP: We solve the homogeneous equation



2f(t)3f(t)+f(t)=02f''(t)-3f'(t)+f(t)=0

We will seek a solution in the form f(t)=ektf(t)=e^{kt} , then



f(t)=ekt{f(t)=kektf(t)=k2ekt2k2ekt3kekt+ekt=0ekt(2k23k+1)=02k23k+1=0quadratic equationD=(3)2421=1=1[k1=(3)+122=1k2=(3)122=12fhom(t)=C1et+C2et/2f(t)=e^{kt}\longrightarrow \left\{\begin{array}{l} f'(t)=k\cdot e^{kt}\\[0.3cm] f''(t)=k^2\cdot e^{kt} \end{array}\right.\longrightarrow\\[0.3cm] 2\cdot k^2\cdot e^{kt}-3\cdot k\cdot e^{kt}+e^{kt}=0\\[0.3cm] e^{kt}\cdot\left(2k^2-3k+1\right)=0\longrightarrow\underbrace{2k^2-3k+1=0}_{\text{quadratic equation}}\\[0.3cm] \sqrt{D}=\sqrt{\left(-3\right)^2-4\cdot 2\cdot1}=\sqrt{1}=1\\[0.3cm] \left[\begin{array}{l} k_1=\displaystyle\frac{-(-3)+1}{2\cdot2}=1\\[0.3cm] k_2=\displaystyle\frac{-(-3)-1}{2\cdot2}=\displaystyle\frac{1}{2} \end{array}\right.\\[0.3cm] \boxed{f_{hom}(t)=C_1\cdot e^t+C_2\cdot e^{t/2}}

2 STEP: We solve the inhomogeneous equation



2f(t)3f(t)+f(t)=tet2f''(t)-3f'(t)+f(t)=t\cdot e^t

Minimum required theory: when solving inhomogeneous equations of the form



F(f,f,f,f,)=g(t)F\left(f,f',f'',f''',\ldots\right)=g(t)

if the right side is g(t)=Pm(t)eαt,wherePm(t)polynomialg(t)=P_m(t)\cdot e^{\alpha t},\,\,\text{where}\,\,\, P_m(t)-\text{polynomial} , then to look for the particular solution in the form



[Pm~(t)eαtαnot the root of the characteristic equationxsPm~(t)eαtαthe root of the characteristic equation\left[\begin{array}{l} \widetilde{P_m}(t)\cdot e^{\alpha t}-\alpha\,\,\text{not the root of the characteristic equation}\\[0.3cm] x^s\widetilde{P_m}(t)\cdot e^{\alpha t}-\alpha\,\,\text{the root of the characteristic equation} \end{array}\right.

In our case,



g(t)=te1tk1=1multiplicity root 1fpar(t)=t(At+B)et(At2+Bt)et{f(t)=(At2+Bt)et+(2At+B)etf(t)=(At2+(2A+B)t+B)etf(t)=(At2+(2A+B)t+B)et+(2At+(2A+B))etf(t)=(At2+(4A+B)t+(2A+2B))etg(t)=t\cdot e^{1\cdot t}\longrightarrow k_1=1-\text{multiplicity root 1}\\[0.3cm] f_{par}(t)=t\cdot\left(At+B\right)\cdot e^t\equiv\left(At^2+Bt\right)\cdot e^t\longrightarrow\\[0.3cm] \left\{\begin{array}{l} f'(t)=\left(At^2+Bt\right)\cdot e^t+\left(2At+B\right)\cdot e^t\\[0.3cm] f'(t)=\left(At^2+(2A+B)t+B\right)\cdot e^t\\[0.3cm] f''(t)=\left(At^2+(2A+B)t+B\right)\cdot e^t+\left(2At+(2A+B)\right)\cdot e^t\\[0.3cm] f''(t)=\left(At^2+(4A+B)t+(2A+2B)\right)\cdot e^t \end{array}\right.

Substitute in the original equation



2(At2+(4A+B)t+(2A+2B))et3(At2+(2A+B)t+B)et+(At2+Bt)et=tet(2A3A+A)t2+(2(4A+B)3(2A+B)+B)t++(2(2A+2B)3B)=t0t2+(2A)t+(4A+B)=t{2A=14A+B=0{A=12B=4A=22\left(At^2+(4A+B)t+(2A+2B)\right)\cdot e^t-\\[0.3cm] -3\left(At^2+(2A+B)t+B\right)\cdot e^t+\left(At^2+Bt\right)\cdot e^t=t\cdot e^t\\[0.3cm] (2A-3A+A)t^2+(2(4A+B)-3(2A+B)+B)t+\\[0.3cm] +(2(2A+2B)-3B)=t\\[0.3cm] 0\cdot t^2+(2A)\cdot t+(4A+B)=t\longrightarrow\\[0.3cm] \left\{\begin{array}{l} 2A=1\\[0.3cm] 4A+B=0 \end{array}\right. \longrightarrow \left\{\begin{array}{l} A=\displaystyle\frac{1}{2}\\[0.3cm] B=-4A=-2 \end{array}\right.

Conclusion,



fpar(t)=(t222t)et\boxed{f_{par}(t)=\left(\frac{t^2}{2}-2t\right)\cdot e^t}

General solution,



f(t)=C1et+C2et/2+(t222t)et\boxed{f(t)=C_1\cdot e^t+C_2\cdot e^{t/2}+\left(\frac{t^2}{2}-2t\right)\cdot e^t}

The constants are determined from the initial conditions



f(0)=1=C1e0+C2e0/2+(02220)e0C1+C2=1f(t)=C1et+C22et/2+(2t2)et+(t222t)etf(0)=32=C1e0+C22e0/2+(202)e0+(02220)e0C1+C222=32f(0)=1=C_1\cdot e^0+C_2\cdot e^{0/2}+\left(\frac{0^2}{2}-2\cdot0\right)\cdot e^0\\[0.3cm] \boxed{C_1+C_2=1}\\[0.3cm] f'(t)=C_1\cdot e^t+\frac{C_2}{2}\cdot e^{t/2}+(2t-2)\cdot e^t+\left(\frac{t^2}{2}-2t\right)\cdot e^t\\[0.3cm] f'(0)=\frac{3}{2}=C_1\cdot e^0+\frac{C_2}{2}\cdot e^{0/2}+(2\cdot0-2)\cdot e^0+\left(\frac{0^2}{2}-2\cdot0\right)\cdot e^0\\[0.3cm] \boxed{C_1+\frac{C_2}{2}-2=\frac{3}{2}}

It remains to solve the system of equations



{C1+C2=1C1+C222=32×(2){C2=1C12C1+C24=3{C2=1C12C1+1C14=3{C2=5C1=6\left\{\begin{array}{l} C_1+C_2=1\\[0.3cm] \left.C_1+\displaystyle\frac{C_2}{2}-2=\displaystyle\frac{3}{2}\right|\times(2) \end{array}\right.\longrightarrow\left\{\begin{array}{l} C_2=1-C_1\\[0.3cm] 2C_1+C_2-4=3\end{array}\right.\longrightarrow\\[0.3cm] \left\{\begin{array}{l} C_2=1-C_1\\[0.3cm] 2C_1+1-C_1-4=3\end{array}\right.\longrightarrow \left\{\begin{array}{l} C_2=-5\\[0.3cm] C_1=6\end{array}\right.


Conclusion, solution of IVT is



f(t)=6et5et/2+(t222t)et\boxed{f(t)=6\cdot e^t-5\cdot e^{t/2}+\left(\frac{t^2}{2}-2t\right)\cdot e^t}

ANSWER



f(t)=6et5et/2+(t222t)etf(t)=6\cdot e^t-5\cdot e^{t/2}+\left(\frac{t^2}{2}-2t\right)\cdot e^t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS