Question #117595
Solve the differential equation dy/dx +[x/1-x^2]y= x√y. y(0) =1
1
Expert's answer
2020-05-26T20:11:28-0400

the given equation can be written as:

yy+xy(1x2)=x\frac{y'}{\sqrt{y}}+ \frac{x\sqrt{y}}{(1-x^2)} = x


let v=2yv=2\sqrt{y}

then, v=yyv'=\frac{y'}{\sqrt{y}}

substituting above, we get,

v+xv2(1x2)=xv'+ \frac{xv}{2(1-x^2)} = x ........(1)


comparing with v'+Pv=Q where P and Q are functions of x

P= x1x2\frac{x}{1-x^2} and Q= x


integrating factor= ePdx=ex(1x2)dx=(1x2)1/4e^{\int{Pdx}}= e^{\int{\frac{x}{(1-x^2)}dx}} = (1-x^2)^{-1/4}


multiplying (1) by integrating factor,

v.(1x2)1/4=(1x2)1/4.xdxv. (1-x^2)^{-1/4} = \int{(1-x^2)^{-1/4}.x}dx


v.(1x2)1/4=23(1x2)3/4+cv. (1-x^2)^{-1/4} = -\frac{2}{3}(1-x^2)^{3/4} + c


substituting value of v,


2y.(1x2)1/4=23(1x2)3/4+c2\sqrt{y}. (1-x^2)^{-1/4} = -\frac{2}{3}(1-x^2)^{3/4} + c


2y=23(1x2)+c(1x2)1/42\sqrt{y}= -\frac{2}{3}(1-x^2) + c(1-x^2)^{1/4}


now, y(0)=1


2=23+cc=832=\frac{-2}{3}+c \\ c=\frac{8}{3}


2y=23(1x2)+83(1x2)1/42\sqrt{y}= -\frac{2}{3}(1-x^2) + \frac{8}{3}(1-x^2)^{1/4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS