Question #117076
Solve the initial value problem
y"(t)+ 2y'(t)+y(t)=3e^(-t) ; y'(0)=2 y(0)=4
1
Expert's answer
2020-05-21T16:47:57-0400

y+2y+y=3ety(0)=4,y(0)=2y''+2y'+y=3e^{-t}\\ y(0)=4, y'(0)=2\\

Solution of equation find in form

y=y1+y2y=y_1+y_2

Consider equation

y+2y+y=0y''+2y'+y=0

Write characteristic equation

λ2+2λ+1=0λ1=λ2=1\lambda^2+2\lambda+1=0 \to \lambda_1=\lambda_2=-1

then the solution of equation is

y1=c1et+c2tety_1=c_1e^{-t}+c_2te^{-t}

The solution y2y_2 find in form

y2=at2ety_2=at^2e^{-t}

input y2y_2 in the first equation

2aet2taet2taet+t2aet++4taet2t2aet+t2aet=3et2a=3,a=1.52ae^{-t}-2tae^{-t} -2tae^{-t} +t^2ae^{-t}+\\ +4tae^{-t}-2t^2ae^{-t}+t^2ae^{-t}=3e^{-t}\\ 2a=3 , a=1.5

so

y2=1.5t2ety_2=1.5t^2e^{-t}

and

y=c1et+c2tet+1.5t2ety=c_1e^{-t}+c_2te^{-t}+1.5t^2e^{-t}

Find

y=c1et+c2etc2tet++2t1.5et1.5t2ety(0)=c1c1=4y(0)=c1+c2c1+c2=24+c2=2c2=6y'=-c_1e^{-t}+c_2e^{-t}-c_2te^{-t}+\\ +2t\cdot 1.5e^{-t}-1.5t^2e^{-t}\\ y(0)=c_1 \to c_1=4\\ y'(0)=-c_1+c_2 \to -c_1+c_2=2 \to\\ -4+c_2=2 \to c_2=6

So

y=4et+6tet+1.5t2ety=4e^{-t}+6te^{-t}+1.5t^2e^{-t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS