y′′+2y′+y=3e−ty(0)=4,y′(0)=2
Solution of equation find in form
y=y1+y2
Consider equation
y′′+2y′+y=0
Write characteristic equation
λ2+2λ+1=0→λ1=λ2=−1
then the solution of equation is
y1=c1e−t+c2te−t
The solution y2 find in form
y2=at2e−t
input y2 in the first equation
2ae−t−2tae−t−2tae−t+t2ae−t++4tae−t−2t2ae−t+t2ae−t=3e−t2a=3,a=1.5
so
y2=1.5t2e−t
and
y=c1e−t+c2te−t+1.5t2e−t
Find
y′=−c1e−t+c2e−t−c2te−t++2t⋅1.5e−t−1.5t2e−ty(0)=c1→c1=4y′(0)=−c1+c2→−c1+c2=2→−4+c2=2→c2=6
So
y=4e−t+6te−t+1.5t2e−t
Comments