Given "G(t)" is a periodic function with period "c", so
"L(G(t)) = \\frac{\\int_0^c G(t)e^{-st}dt}{1-e^{-cs}}" .
Now, "\\int_0^c G(t)e^{-st}dt = \\int_0^c e^te^{-st}dt = \\int_0^c e^{(-s+1)t}dt = \\frac{e^{(-s+1)t}}{-s+1}".
"\\implies L(G(t))= \\frac{e^{(1-s)t}}{(1-s)(1-e^{-cs})}" .
Graph of given function depends on value of c. To show one plot, we assume c = 2.
So, graph of given function is:
Comments
Leave a comment